Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793851

RESUMO

Investigating the neural mechanisms underlying both cooperative and competitive joint actions may have a wide impact in many social contexts of human daily life. An effective pipeline of analysis for hyperscanning data recorded in a naturalistic context with a cooperative and competitive motor task has been missing. We propose an analytical pipeline for this type of joint action data, which was validated on electroencephalographic (EEG) signals recorded in a proof-of-concept study on two dyads playing cooperative and competitive table tennis. Functional connectivity maps were reconstructed using the corrected imaginary part of the phase locking value (ciPLV), an algorithm suitable in case of EEG signals recorded during turn-based competitive joint actions. Hyperbrain, within-, and between-brain functional connectivity maps were calculated in three frequency bands (i.e., theta, alpha, and beta) relevant during complex motor task execution and were characterized with graph theoretical measures and a clustering approach. The results of the proof-of-concept study are in line with recent findings on the main features of the functional networks sustaining cooperation and competition, hence demonstrating that the proposed pipeline is promising tool for the analysis of joint action EEG data recorded during cooperation and competition using a turn-based motor task.


Assuntos
Algoritmos , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Encéfalo/fisiologia , Masculino , Adulto , Comportamento Cooperativo , Estudo de Prova de Conceito , Feminino , Processamento de Sinais Assistido por Computador
2.
Brain Topogr ; 37(3): 461-474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37823945

RESUMO

Preterm neonates are at risk of long-term neurodevelopmental impairments due to disruption of natural brain development. Electroencephalography (EEG) analysis can provide insights into brain development of preterm neonates. This study aims to explore the use of microstate (MS) analysis to evaluate global brain dynamics changes during maturation in preterm neonates with normal neurodevelopmental outcome.The dataset included 135 EEGs obtained from 48 neonates at varying postmenstrual ages (26.4 to 47.7 weeks), divided into four age groups. For each recording we extracted a 5-minute epoch during quiet sleep (QS) and during non-quiet sleep (NQS), resulting in eight groups (4 age group x 2 sleep states). We compared MS maps and corresponding (map-specific) MS metrics across groups using group-level maps. Additionally, we investigated individual map metrics.Four group-level MS maps accounted for approximately 70% of the global variance and showed non-random syntax. MS topographies and transitions changed significantly when neonates reached 37 weeks. For both sleep states and all MS maps, MS duration decreased and occurrence increased with age. The same relationships were found using individual maps, showing strong correlations (Pearson coefficients up to 0.74) between individual map metrics and post-menstrual age. Moreover, the Hurst exponent of the individual MS sequence decreased with age.The observed changes in MS metrics with age might reflect the development of the preterm brain, which is characterized by formation of neural networks. Therefore, MS analysis is a promising tool for monitoring preterm neonatal brain maturation, while our study can serve as a valuable reference for investigating EEGs of neonates with abnormal neurodevelopmental outcomes.


Assuntos
Encéfalo , Eletroencefalografia , Recém-Nascido , Humanos , Eletroencefalografia/métodos , Sono , Benchmarking , Idioma
3.
Front Hum Neurosci ; 17: 1305331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125713

RESUMO

A novel multimodal experimental setup and dyadic study protocol were designed to investigate the neurophysiological underpinnings of joint action through the synchronous acquisition of EEG, ECG, EMG, respiration and kinematic data from two individuals engaged in ecologic and naturalistic cooperative and competitive joint actions involving face-to-face real-time and real-space coordinated full body movements. Such studies are still missing because of difficulties encountered in recording reliable neurophysiological signals during gross body movements, in synchronizing multiple devices, and in defining suitable study protocols. The multimodal experimental setup includes the synchronous recording of EEG, ECG, EMG, respiration and kinematic signals of both individuals via two EEG amplifiers and a motion capture system that are synchronized via a single-board microcomputer and custom Python scripts. EEG is recorded using new dry sports electrode caps. The novel study protocol is designed to best exploit the multimodal data acquisitions. Table tennis is the dyadic motor task: it allows naturalistic and face-to-face interpersonal interactions, free in-time and in-space full body movement coordination, cooperative and competitive joint actions, and two task difficulty levels to mimic changing external conditions. Recording conditions-including minimum table tennis rally duration, sampling rate of kinematic data, total duration of neurophysiological recordings-were defined according to the requirements of a multilevel analytical approach including a neural level (hyperbrain functional connectivity, Graph Theoretical measures and Microstate analysis), a cognitive-behavioral level (integrated analysis of neural and kinematic data), and a social level (extending Network Physiology to neurophysiological data recorded from two interacting individuals). Four practical tests for table tennis skills were defined to select the study population, permitting to skill-match the dyad members and to form two groups of higher and lower skilled dyads to explore the influence of skill level on joint action performance. Psychometric instruments are included to assess personality traits and support interpretation of results. Studying joint action with our proposed protocol can advance the understanding of the neurophysiological mechanisms sustaining daily life joint actions and could help defining systems to predict cooperative or competitive behaviors before being overtly expressed, particularly useful in real-life contexts where social behavior is a main feature.

4.
Neuroimage ; 279: 120342, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619792

RESUMO

Early neurodevelopment is critically dependent on the structure and dynamics of spontaneous neuronal activity; however, the natural organization of newborn cortical networks is poorly understood. Recent adult studies suggest that spontaneous cortical activity exhibits discrete network states with physiological correlates. Here, we studied newborn cortical activity during sleep using hidden Markov modeling to determine the presence of such discrete neonatal cortical states (NCS) in 107 newborn infants, with 47 of them presenting with a perinatal brain injury. Our results show that neonatal cortical activity organizes into four discrete NCSs that are present in both cardinal sleep states of a newborn infant, active and quiet sleep, respectively. These NCSs exhibit state-specific spectral and functional network characteristics. The sleep states exhibit different NCS dynamics, with quiet sleep presenting higher fronto-temporal activity and a stronger brain-wide neuronal coupling. Brain injury was associated with prolonged lifetimes of the transient NCSs, suggesting lowered dynamics, or flexibility, in the cortical networks. Taken together, the findings suggest that spontaneously occurring transient network states are already present at birth, with significant physiological and pathological correlates; this NCS analysis framework can be fully automatized, and it holds promise for offering an objective, global level measure of early brain function for benchmarking neurodevelopmental or clinical research.


Assuntos
Lesões Encefálicas , Sono de Ondas Lentas , Zinostatina , Adulto , Recém-Nascido , Lactente , Feminino , Gravidez , Humanos , Lesões Encefálicas/diagnóstico por imagem , Encéfalo , Sono , Benchmarking
5.
Int J Neural Syst ; 33(9): 2350046, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37497802

RESUMO

Seizures are the most prevalent clinical indication of neurological disorders in neonates. In this study, a class-imbalance aware and explainable deep learning approach based on Convolutional Neural Networks (CNNs) and Graph Attention Networks (GATs) is proposed for the accurate automated detection of neonatal seizures. The proposed model integrates the temporal information of EEG signals with the spatial information on the EEG channels through the graph representation of the multi-channel EEG segments. One-dimensional CNNs are used to automatically develop a feature set that accurately represents the differences between seizure and nonseizure epochs in the time domain. By employing GAT, the attention mechanism is utilized to emphasize the critical channel pairs and information flow among brain regions. GAT coefficients were then used to empirically visualize the important regions during the seizure and nonseizure epochs, which can provide valuable insight into the location of seizures in the neonatal brain. Additionally, to tackle the severe class imbalance in the neonatal seizure dataset using under-sampling and focal loss techniques are used. Overall, the final Spatio-Temporal Graph Attention Network (ST-GAT) outperformed previous benchmarked methods with a mean AUC of 96.6% and Kappa of 0.88, demonstrating its high accuracy and potential for clinical applications.


Assuntos
Eletroencefalografia , Epilepsia , Recém-Nascido , Humanos , Eletroencefalografia/métodos , Convulsões/diagnóstico , Epilepsia/diagnóstico , Redes Neurais de Computação
6.
J Neural Eng ; 20(2)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36791462

RESUMO

Objective. Automated artefact detection in the neonatal electroencephalogram (EEG) is crucial for reliable automated EEG analysis, but limited availability of expert artefact annotations challenges the development of deep learning models for artefact detection. This paper proposes a semi-supervised deep learning approach for artefact detection in neonatal EEG that requires few labelled data by training a multi-task convolutional neural network (CNN).Approach. An unsupervised and a supervised objective were jointly optimised by combining an autoencoder and an artefact classifier in one multi-output model that processes multi-channel EEG inputs. The proposed semi-supervised multi-task training strategy was compared to a classical supervised strategy and other existing state-of-the-art models. The models were trained and tested separately on two different datasets, which contained partially annotated multi-channel neonatal EEG. Models were evaluated using the F1-statistic and the relevance of the method was investigated in the context of a functional brain age (FBA) prediction model.Main results. The proposed multi-task and multi-channel CNN methods outperformed state-of-the-art methods, reaching F1 scores of 86.2% and 95.7% on two separate datasets. The proposed semi-supervised multi-task training strategy was shown to be superior to a classical supervised training strategy when the amount of labels in the dataset was artificially reduced. Finally, we found that the error of a brain age prediction model correlated with the amount of automatically detected artefacts in the EEG segment.Significance. Our results show that the proposed semi-supervised multi-task training strategy can train CNNs successfully even when the amount of labels in the dataset is limited. Therefore, this method is a promising semi-supervised technique for developing deep learning models with scarcely labelled data. Moreover, a correlation between the error of FBA estimates and the amount of detected artefacts in the corresponding EEG segments indicates the relevance of artefact detection for robust automated EEG analysis.


Assuntos
Artefatos , Redes Neurais de Computação , Eletroencefalografia/métodos , Aprendizado de Máquina Supervisionado
7.
Psychophysiology ; 60(3): e14198, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36271701

RESUMO

The ability to establish a connection between the direction of the other's gaze and the object that is observed has important implications in the development of social cognition and learning. In this study, we analyzed alpha and theta band oscillations in one group of 9-month-old infants by implementing a face-to-face live paradigm, which presented the infants with a triadic social interaction with a real human being. We compared neural activations in two experimental conditions: Congruent and Incongruent gaze shift following the appearance of an object. In the Incongruent object-gaze shift condition, we observed an increase of the theta power in comparison with the Congruent condition. We also found an enhancement of the alpha activity during the Congruent versus the Incongruent object-gaze condition. These findings confirm the involvement of the theta and alpha band activity in the detection of the gaze of others when it shifts toward a referential target. We consider that the theta band modulation could be associated with the processing of unexpected events. Furthermore, the increase of the alpha band activity during the Congruent object-gaze condition seems to be in agreement with prior findings on the mechanisms of internally controlled attention that emerge before the first year of life. The implementation of a live paradigm elicited a partially different oscillatory pattern in comparison with non-live standard paradigms, supporting the importance of an ecological set-up reproducing real-life conditions to study the development of social cognition.


Assuntos
Fixação Ocular , Aprendizagem , Humanos , Lactente , Interação Social , Cognição Social , Encéfalo
8.
J Neural Eng ; 19(5)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36195069

RESUMO

Objective.The aim of the present study was to elucidate the brain dynamics underlying the maintenance of a constant force level exerted during a visually guided isometric contraction task by optimizing a predictive multivariate model based on global and spectral brain dynamics features.Approach.Electroencephalography (EEG) was acquired in 18 subjects who were asked to press a bulb and maintain a constant force level, indicated by a bar on a screen. For intervals of 500 ms, we calculated an index of force stability as well as indices of brain dynamics: microstate metrics (duration, occurrence, global explained variance, directional predominance) and EEG spectral amplitudes in the theta, low alpha, high alpha and beta bands. We optimized a multivariate regression model (partial least square (PLS)) where the microstate features and the spectral amplitudes were the input variables and the indexes of force stability were the output variables. The issues related to the collinearity among the input variables and to the generalizability of the model were addressed using PLS in a nested cross-validation approach.Main results.The optimized PLS regression model reached a good generalizability and succeeded to show the predictive value of microstates and spectral features in inferring the stability of the exerted force. Longer duration and higher occurrence of microstates, associated with visual and executive control networks, corresponded to better contraction performances, in agreement with the role played by the visual system and executive control network for visuo-motor integration.Significance.A combination of microstate metrics and brain rhythm amplitudes could be considered as biomarkers of a stable visually guided motor output not only at a group level, but also at an individual level. Our results may play an important role for a better understanding of the motor control in single trials or in real-time applications as well as in the study of motor control.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Mapeamento Encefálico/métodos , Biomarcadores
9.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298430

RESUMO

Dry electrodes for electroencephalography (EEG) allow new fields of application, including telemedicine, mobile EEG, emergency EEG, and long-term repetitive measurements for research, neurofeedback, or brain-computer interfaces. Different dry electrode technologies have been proposed and validated in comparison to conventional gel-based electrodes. Most previous studies have been performed at a single center and by single operators. We conducted a multi-center and multi-operator study validating multipin dry electrodes to study the reproducibility and generalizability of their performance in different environments and for different operators. Moreover, we aimed to study the interrelation of operator experience, preparation time, and wearing comfort on the EEG signal quality. EEG acquisitions using dry and gel-based EEG caps were carried out in 6 different countries with 115 volunteers, recording electrode-skin impedances, resting state EEG and evoked activity. The dry cap showed average channel reliability of 81% but higher average impedances than the gel-based cap. However, the dry EEG caps required 62% less preparation time. No statistical differences were observed between the gel-based and dry EEG signal characteristics in all signal metrics. We conclude that the performance of the dry multipin electrodes is highly reproducible, whereas the primary influences on channel reliability and signal quality are operator skill and experience.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Reprodutibilidade dos Testes , Eletrodos , Impedância Elétrica
10.
PeerJ ; 10: e13734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846889

RESUMO

Background: Artefact removal in neonatal electroencephalography (EEG) by visual inspection generally depends on the expertise of the operator, is time consuming and is not a consistent pre-processing step to the pipeline for the automated EEG analysis. Therefore, there is the need for the automated detection and removal of artefacts in neonatal EEG, especially of distinct and predominant artefacts such as flat line segments (mainly caused by instrumental error where contact between electrodes and head box is lost) and large amplitude fluctuations (related to neonatal movements). Method: A threshold-based algorithm for the automated detection and removal of flat line segments and large amplitude fluctuations in neonatal EEG of infants at term-equivalent age is developed. The algorithm applies thresholds to the absolute second difference, absolute amplitude, absolute first difference and the ratio between the frequency content above 50 Hz and the frequency content across all frequencies. Results: The algorithm reaches a median accuracy of 0.91, a median hit rate of 0.91 and a median false discovery rate of 0.37. Also, a significant improvement (≈10%) in the performance of a four-stage sleep classifier is observed after artefact removal with the proposed algorithm as compared to before its application. Significance: An automated artefact removal method contributes to the pipeline of automated EEG analysis. The proposed algorithm has shown to have good performance and to be effective in neonatal EEG applications.


Assuntos
Eletroencefalografia , Sono , Recém-Nascido , Humanos , Eletroencefalografia/métodos , Artefatos , Algoritmos , Movimento
11.
Comput Methods Programs Biomed ; 222: 106950, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35717740

RESUMO

BACKGROUND AND OBJECTIVE: Neonatal seizures are the most common clinical presentation of neurological conditions and can have adverse effects on the neurodevelopment of the neonatal brain. Visual detection of these events from continuous EEG recordings is a laborious and time-consuming task. We propose a novel algorithm for the automated detection of neonatal seizures. METHODS: In this study, we propose a novel deep learning model based on Graph Convolutional Neural Networks for the automated detection of neonatal seizures. Unlike other methods exploiting mainly the temporal information contained in EEG signals, our method also considers long-range spatial information, i.e., the interdependencies across EEG signals. The temporal information is embedded as graph signals in the graph representation of the EEG recordings and includes EEG features extracted from the EEG signals in the time and frequency domains. The spatial information is represented as functional connections among the EEG channels (calculated by the phase-locking value and the mean squared coherence) or as maps of Euclidean distances. These different spatial representations were evaluated to assess their efficiency in providing more discriminative features for an effective detection of neonatal seizures. The model performance was assessed on a publicly available dataset of continuous EEG signals recorded from 39 neonates by means of the area under the curve (AUC) and the AUC for specificity values greater than 90% (AUC90). RESULTS: After applying post-processing, consisting in smoothing the output of the classifiers, the models based on the mean squared coherence, the phase-locking value, and the Euclidean distance respectively reached a median AUC of 99.1% (IQR: 96.8%-99.6%), 99% (IQR: 95.2%-99.7%), and 97.3% (IQR: 86.3%-99.6%), and a median AUC90 of 96%, 95.7%, and 94.9%. These values are superior or comparable to those reached by methods considered as state-of-the-art in this field. CONCLUSIONS: Our results show that the EEG graph representations drawn from functional connectivity measures can effectively leverage interdependencies among EEG signals and lead to reliable detection of neonatal seizures. Furthermore, our model has the advantage of requiring only temporal annotations on seizures for the training phase, making it more appealing for clinical applications.


Assuntos
Eletroencefalografia , Epilepsia , Algoritmos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Recém-Nascido , Redes Neurais de Computação , Convulsões/diagnóstico
15.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884159

RESUMO

In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and overcoming several of the limitations of conventional gel-based electrodes such as reusability, durability, biocompatibility, and comfort. The thin films were deposited on stainless steel (SS) discs and polyurethane (PU) substrates to be used as dry electrodes, for non-invasive monitoring of body surface biopotentials. Four different Ti-Me (Me = Al, Cu, Ag, or Au) metallic binary systems were prepared by magnetron sputtering. The morphology of the resulting Ti-Me systems was found to be dependent on the chemical composition of the films, specifically on the type and amount of Me. The existence of crystalline intermetallic phases or glassy amorphous structures also revealed a strong influence on the morphological features developed by the different systems. The electrodes were tested in an in-vivo study on 20 volunteers during sports activity, allowing study of the application-specific characteristics of the dry electrodes, based on Ti-Me intermetallic thin films, and evaluation of the impact of the electrode-skin impedance on biopotential sensing. The electrode-skin impedance results support the reusability and the high degree of reliability of the Ti-Me dry electrodes. The Ti-Al films revealed the least performance as biopotential electrodes, while the Ti-Au system provided excellent results very close to the Ag/AgCl reference electrodes.


Assuntos
Nanoestruturas , Titânio , Impedância Elétrica , Eletrodos , Humanos , Reprodutibilidade dos Testes
16.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640681

RESUMO

Electrical cardiac and pulsatile interference is very difficult to remove from electroencephalographic (EEG) signals, especially if recorded in neonates, for which a small number of EEG channels is used. Several methods were proposed, including Blind Source Separation (BSS) methods that required the use of artificial cardiac-related signals to improve the separation of artefactual components. To optimize the separation of cardiac-related artefactual components, we propose a method based on Independent Component Analysis (ICA) that exploits specific features of the real electrocardiographic (ECG) signals that were simultaneously recorded with the neonatal EEG. A total of forty EEG segments from 19-channel neonatal EEG recordings with and without seizures were used to test and validate the performance of our method. We observed a significant reduction in the number of independent components (ICs) containing cardiac-related interferences, with a consequent improvement in the automated classification of the separated ICs. The comparison with the expert labeling of the ICs separately containing electrical cardiac and pulsatile interference led to an accuracy = 0.99, a false omission rate = 0.01 and a sensitivity = 0.93, outperforming existing methods. Furthermore, we verified that true brain activity was preserved in neonatal EEG signals reconstructed after the removal of artefactual ICs, demonstrating the effectiveness of our method and its safe applicability in a clinical context.


Assuntos
Algoritmos , Artefatos , Eletroencefalografia , Frequência Cardíaca , Humanos , Recém-Nascido , Convulsões
17.
Brain Topogr ; 34(5): 555-567, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34258668

RESUMO

Neonates spend most of their life sleeping. During sleep, their brain experiences fast changes in its functional organization. Microstate analysis permits to capture the rapid dynamical changes occurring in the functional organization of the brain by representing the changing spatio-temporal features of the electroencephalogram (EEG) as a sequence of short-lasting scalp topographies-the microstates. In this study, we modeled the ongoing neonatal EEG into sequences of a limited number of microstates and investigated whether the extracted microstate features are altered in REM and NREM sleep (usually known as active and quiet sleep states-AS and QS-in the newborn) and depend on the EEG frequency band. 19-channel EEG recordings from 60 full-term healthy infants were analyzed using a modified version of the k-means clustering algorithm. The results show that ~ 70% of the variance in the datasets can be described using 7 dominant microstate templates. The mean duration and mean occurrence of the dominant microstates were significantly different in the two sleep states. Microstate syntax analysis demonstrated that the microstate sequences characterizing AS and QS had specific non-casual structures that differed in the two sleep states. Microstate analysis of the neonatal EEG in specific frequency bands showed a clear dependence of the explained variance on frequency. Overall, our findings demonstrate that (1) the spatio-temporal dynamics of the neonatal EEG can be described by non-casual sequences of a limited number of microstate templates; (2) the brain dynamics described by these microstate templates depends on frequency; (3) the features of the microstate sequences can well differentiate the physiological conditions characterizing AS and QS.


Assuntos
Encéfalo , Eletroencefalografia , Algoritmos , Mapeamento Encefálico , Humanos , Recém-Nascido , Sono
18.
Clin EEG Neurosci ; 52(1): 3-28, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32975150

RESUMO

INTRODUCTION: The global COVID-19 pandemic has affected the economy, daily life, and mental/physical health. The latter includes the use of electroencephalography (EEG) in clinical practice and research. We report a survey of the impact of COVID-19 on the use of clinical EEG in practice and research in several countries, and the recommendations of an international panel of experts for the safe application of EEG during and after this pandemic. METHODS: Fifteen clinicians from 8 different countries and 25 researchers from 13 different countries reported the impact of COVID-19 on their EEG activities, the procedures implemented in response to the COVID-19 pandemic, and precautions planned or already implemented during the reopening of EEG activities. RESULTS: Of the 15 clinical centers responding, 11 reported a total stoppage of all EEG activities, while 4 reduced the number of tests per day. In research settings, all 25 laboratories reported a complete stoppage of activity, with 7 laboratories reopening to some extent since initial closure. In both settings, recommended precautions for restarting or continuing EEG recording included strict hygienic rules, social distance, and assessment for infection symptoms among staff and patients/participants. CONCLUSIONS: The COVID-19 pandemic interfered with the use of EEG recordings in clinical practice and even more in clinical research. We suggest updated best practices to allow safe EEG recordings in both research and clinical settings. The continued use of EEG is important in those with psychiatric diseases, particularly in times of social alarm such as the COVID-19 pandemic.


Assuntos
COVID-19/virologia , Consenso , Eletroencefalografia , SARS-CoV-2/patogenicidade , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , COVID-19/fisiopatologia , Eletroencefalografia/efeitos adversos , Eletroencefalografia/métodos , Humanos , Transtornos Mentais/fisiopatologia
19.
Front Hum Neurosci ; 14: 243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733219

RESUMO

Various methods have been employed to investigate different aspects of brain activity modulation related to the performance of a cycling task. In our study, we examined how functional connectivity and brain network efficiency varied during an endurance cycling task. For this purpose, we reconstructed EEG signals at source level: we computed current densities in 28 anatomical regions of interest (ROIs) through the eLORETA algorithm, and then we calculated the lagged coherence of the 28 current density signals to define the adjacency matrix. To quantify changes of functional network efficiency during an exhaustive cycling task, we computed three graph theoretical indices: local efficiency (LE), global efficiency (GE), and density (D) in two different frequency bands, Alpha and Beta bands, that indicate alertness processes and motor binding/fatigue, respectively. LE is a measure of functional segregation that quantifies the ability of a network to exchange information locally. GE is a measure of functional integration that quantifies the ability of a network to exchange information globally. D is a global measure of connectivity that describes the extent of connectivity in a network. This analysis was conducted for six different task intervals: pre-cycling; initial, intermediate, and final stages of cycling; and active recovery and passive recovery. Fourteen participants performed an incremental cycling task with simultaneous EEG recording and rated perceived exertion monitoring to detect the participants' exhaustion. LE remained constant during the endurance cycling task in both bands. Therefore, we speculate that fatigue processes did not affect the segregated neural processing. We observed an increase of GE in the Alpha band only during cycling, which could be due to greater alertness processes and preparedness to stimuli during exercise. Conversely, although D did not change significantly over time in the Alpha band, its general reduction in the Beta bands during cycling could be interpreted within the framework of the neural efficiency hypothesis, which posits a reduced neural activity for expert/automated performances. We argue that the use of graph theoretical indices represents a clear methodological advancement in studying endurance performance.

20.
Front Neurosci ; 14: 577160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510607

RESUMO

The assessment of a method for removing artifacts from electroencephalography (EEG) datasets often disregard verifying that global brain dynamics is preserved. In this study, we verified that the recently introduced optimized fingerprint method and the automatic removal of cardiac interference (ARCI) approach not only remove physiological artifacts from EEG recordings but also preserve global brain dynamics, as assessed with a new approach based on microstate analysis. We recorded EEG activity with a high-resolution EEG system during two resting-state conditions (eyes open, 25 volunteers, and eyes closed, 26 volunteers) known to exhibit different brain dynamics. After signal decomposition by independent component analysis (ICA), the independent components (ICs) related to eyeblinks, eye movements, myogenic interference, and cardiac electromechanical activity were identified with the optimized fingerprint method and ARCI approach and statistically compared with the outcome of the expert classification of the ICs by visual inspection. Brain dynamics in two different groups of denoised EEG signals, reconstructed after having removed the artifactual ICs identified by either visual inspection or the automated methods, was assessed by calculating microstate topographies, microstate metrics (duration, occurrence, and coverage), and directional predominance (based on transition probabilities). No statistically significant differences between the expert and the automated classification of the artifactual ICs were found (p > 0.05). Cronbach's α values assessed the high test-retest reliability of microstate parameters for EEG datasets denoised by the automated procedure. The total EEG signal variance explained by the sets of global microstate templates was about 80% for all denoised EEG datasets, with no significant differences between groups. For the differently denoised EEG datasets in the two recording conditions, we found that the global microstate templates and the sequences of global microstates were very similar (p < 0.01). Descriptive statistics and Cronbach's α of microstate metrics highlighted no significant differences and excellent consistency between groups (p > 0.5). These results confirm the ability of the optimized fingerprint method and the ARCI approach to effectively remove physiological artifacts from EEG recordings while preserving global brain dynamics. They also suggest that microstate analysis could represent a novel approach for assessing the ability of an EEG denoising method to remove artifacts without altering brain dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA