Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Phenomics ; 2021: 9892647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957414

RESUMO

Multispectral observations from unmanned aerial vehicles (UAVs) are currently used for precision agriculture and crop phenotyping applications to monitor a series of traits allowing the characterization of the vegetation status. However, the limited autonomy of UAVs makes the completion of flights difficult when sampling large areas. Increasing the throughput of data acquisition while not degrading the ground sample distance (GSD) is, therefore, a critical issue to be solved. We propose here a new image acquisition configuration based on the combination of two focal length (f) optics: an optics with f = 4.2 mm is added to the standard f = 8 mm (SS: single swath) of the multispectral camera (DS: double swath, double of the standard one). Two flights were completed consecutively in 2018 over a maize field using the AIRPHEN multispectral camera at 52 m altitude. The DS flight plan was designed to get 80% overlap with the 4.2 mm optics, while the SS one was designed to get 80% overlap with the 8 mm optics. As a result, the time required to cover the same area is halved for the DS as compared to the SS. The georeferencing accuracy was improved for the DS configuration, particularly for the Z dimension due to the larger view angles available with the small focal length optics. Application to plant height estimates demonstrates that the DS configuration provides similar results as the SS one. However, for both the DS and SS configurations, degrading the quality level used to generate the 3D point cloud significantly decreases the plant height estimates.

2.
Front Plant Sci ; 10: 685, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231403

RESUMO

The dynamics of the Green Leaf Area Index (GLAI) is of great interest for numerous applications such as yield prediction and plant breeding. We present a high-throughput model-assisted method for characterizing GLAI dynamics in maize (Zea mays subsp. mays) using multispectral imagery acquired from an Unmanned Aerial Vehicle (UAV). Two trials were conducted with a high diversity panel of 400 lines under well-watered and water-deficient treatments in 2016 and 2017. For each UAV flight, we first derived GLAI estimates from empirical relationships between the multispectral reflectance and ground level measurements of GLAI achieved over a small sample of microplots. We then fitted a simple but physiologically sound GLAI dynamics model over the GLAI values estimated previously. Results show that GLAI dynamics was estimated accurately throughout the cycle (R2 > 0.9). Two parameters of the model, biggest leaf area and leaf longevity, were also estimated successfully. We showed that GLAI dynamics and the parameters of the fitted model are highly heritable (0.65 ≤ H2 ≤ 0.98), responsive to environmental conditions, and linked to yield and drought tolerance. This method, combining growth modeling, UAV imagery and simple non-destructive field measurements, provides new high-throughput tools for understanding the adaptation of GLAI dynamics and its interaction with the environment. GLAI dynamics is also a promising trait for crop breeding, and paves the way for future genetic studies.

3.
Plant Phenomics ; 2019: 4820305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33313528

RESUMO

Total above-ground biomass at harvest and ear density are two important traits that characterize wheat genotypes. Two experiments were carried out in two different sites where several genotypes were grown under contrasted irrigation and nitrogen treatments. A high spatial resolution RGB camera was used to capture the residual stems standing straight after the cutting by the combine machine during harvest. It provided a ground spatial resolution better than 0.2 mm. A Faster Regional Convolutional Neural Network (Faster-RCNN) deep-learning model was first trained to identify the stems cross section. Results showed that the identification provided precision and recall close to 95%. Further, the balance between precision and recall allowed getting accurate estimates of the stem density with a relative RMSE close to 7% and robustness across the two experimental sites. The estimated stem density was also compared with the ear density measured in the field with traditional methods. A very high correlation was found with almost no bias, indicating that the stem density could be a good proxy of the ear density. The heritability/repeatability evaluated over 16 genotypes in one of the two experiments was slightly higher (80%) than that of the ear density (78%). The diameter of each stem was computed from the profile of gray values in the extracts of the stem cross section. Results show that the stem diameters follow a gamma distribution over each microplot with an average diameter close to 2.0 mm. Finally, the biovolume computed as the product of the average stem diameter, the stem density, and plant height is closely related to the above-ground biomass at harvest with a relative RMSE of 6%. Possible limitations of the findings and future applications are finally discussed.

4.
J Exp Bot ; 69(10): 2705-2716, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29617837

RESUMO

Leaf rolling in maize crops is one of the main plant reactions to water stress that can be visually scored in the field. However, leaf-scoring techniques do not meet the high-throughput requirements needed by breeders for efficient phenotyping. Consequently, this study investigated the relationship between leaf-rolling scores and changes in canopy structure that can be determined by high-throughput remote-sensing techniques. Experiments were conducted in 2015 and 2016 on maize genotypes subjected to water stress. Leaf-rolling was scored visually over the whole day around the flowering stage. Concurrent digital hemispherical photographs were taken to evaluate the impact of leaf-rolling on canopy structure using the computed fraction of intercepted diffuse photosynthetically active radiation, FIPARdif. The results showed that leaves started to roll due to water stress around 09:00 h and leaf-rolling reached its maximum around 15:00 h (the photoperiod was about 05:00-20:00 h). In contrast, plants maintained under well-watered conditions did not show any significant rolling during the same day. A canopy-level index of rolling (CLIR) is proposed to quantify the diurnal changes in canopy structure induced by leaf-rolling. It normalizes for the differences in FIPARdif between genotypes observed in the early morning when leaves are unrolled, as well as for yearly effects linked to environmental conditions. Leaf-level rolling score was very strongly correlated with changes in canopy structure as described by the CLIR (r2=0.86, n=370). The daily time course of rolling was characterized using the amplitude of variation, and the rate and the timing of development computed at both the leaf and canopy levels. Results obtained from eight genotypes common between the two years of experiments showed that the amplitude of variation of the CLIR was the more repeatable trait (Spearman coefficient ρ=0.62) as compared to the rate (ρ=0.29) and the timing of development (ρ=0.33). The potential of these findings for the development of a high-throughput method for determining leaf-rolling based on aerial drone observations are considered.


Assuntos
Dessecação , Ensaios de Triagem em Larga Escala/métodos , Fenótipo , Folhas de Planta/fisiologia , Zea mays/fisiologia , Fotossíntese
5.
Plant Methods ; 14: 23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29581726

RESUMO

BACKGROUND: Leaf biochemical composition corresponds to traits related to the plant state and its functioning. This study puts the emphasis on the main leaf absorbers: chlorophyll a and b ([Formula: see text]), carotenoids ([Formula: see text]), water ([Formula: see text]) and dry mater ([Formula: see text]) contents. Two main approaches were used to estimate [[Formula: see text] [Formula: see text], [Formula: see text], [Formula: see text]] in a non-destructive way using spectral measurements. The first one consists in building empirical relationships from experimental datasets using either the raw reflectances or their combination into vegetation indices (VI). The second one relies on the inversion of physically based models of leaf optical properties. Although the first approach is commonly used, the calibration of the empirical relationships is generally conducted over a limited dataset. Consequently, poor predictions may be observed when applying them on cases that are not represented in the training dataset, i.e. when dealing with different species, genotypes or under contrasted environmental conditions. The retrieval performances of the selected VIs were thus compared to the ones of four PROSPECT model versions based on reflectance data acquired at two phenological stages, over six wheat genotypes grown under three different nitrogen fertilizations and two sowing density modalities. Leaf reflectance was measured in the lab with a spectrophotometer equipped with an integrating sphere, the leaf being placed in front of a white Teflon background to increase the sensitivity to leaf biochemical composition. Destructive measurements of [[Formula: see text] [Formula: see text], [Formula: see text], [Formula: see text]] were performed concurrently. RESULTS: The destructive measurements demonstrated that the carotenoid, [Formula: see text], and chlorophyll, [Formula: see text], contents were strongly correlated (r2 = 0.91). The sum of [Formula: see text] and [Formula: see text], i.e. the total chlorophyllian pigment content, [Formula: see text], was therefore used in this study. When inverting the PROSPECT model, accounting for the brown pigment content, [Formula: see text], was necessary when leaves started to senesce. The values of [Formula: see text] and [Formula: see text] were well estimated (r2 = 0.81 and r2 = 0.88 respectively) while the dry matter content, [Formula: see text], was poorly estimated (r2 = 0.00). Retrieval of [Formula: see text] from PROSPECT versions was only slightly biased, while substantial overestimation of [Formula: see text] was observed. The ranking between estimated values of [Formula: see text] and [Formula: see text] from the several PROSPECT versions and that derived using the VIs were similar to the ranking observed over the destructively measured values of [Formula: see text] and [Formula: see text]. CONCLUSIONS: PROSPECT model inversion and empirical VI approach provide similar retrieval performances and are useful methods to estimate leaf biochemical composition from spectral measurements. However, the PROSPECT model inversion gives potential access to additional traits on surface reflectivity and leaf internal structure. This study suggests that non-destructive estimation of leaf chlorophyll and water contents is a relevant method to provide leaf traits with relatively high throughput.

6.
Front Plant Sci ; 8: 2002, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29230229

RESUMO

The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z-value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values (H2> 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable (H2> 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed.

7.
Plant Methods ; 13: 38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529535

RESUMO

BACKGROUND: Plant density and its non-uniformity drive the competition among plants as well as with weeds. They need thus to be estimated with small uncertainties accuracy. An optimal sampling method is proposed to estimate the plant density in wheat crops from plant counting and reach a given precision. RESULTS: Three experiments were conducted in 2014 resulting in 14 plots across varied sowing density, cultivars and environmental conditions. The coordinates of the plants along the row were measured over RGB high resolution images taken from the ground level. Results show that the spacing between consecutive plants along the row direction are independent and follow a gamma distribution under the varied conditions experienced. A gamma count model was then derived to define the optimal sample size required to estimate plant density for a given precision. Results suggest that measuring the length of segments containing 90 plants will achieve a precision better than 10%, independently from the plant density. This approach appears more efficient than the usual method based on fixed length segments where the number of plants are counted: the optimal length for a given precision on the density estimation will depend on the actual plant density. The gamma count model parameters may also be used to quantify the heterogeneity of plant spacing along the row by exploiting the variability between replicated samples. Results show that to achieve a 10% precision on the estimates of the 2 parameters of the gamma model, 200 elementary samples corresponding to the spacing between 2 consecutive plants should be measured. CONCLUSIONS: This method provides an optimal sampling strategy to estimate the plant density and quantify the plant spacing heterogeneity along the row.

8.
Funct Plant Biol ; 39(11): 914-924, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32480841

RESUMO

A semi-automatic system was developed to monitor micro-plots of wheat cultivars in field conditions for phenotyping. The system is based on a hyperspectral radiometer and 2 RGB cameras observing the canopy from ~1.5m distance to the top of the canopy. The system allows measurement from both nadir and oblique views inclined at 57.5° zenith angle perpendicularly to the row direction. The system is fixed to a horizontal beam supported by a tractor that moves along the micro-plots. About 100 micro-plots per hour were sampled by the system, the data being automatically collected and registered thanks to a centimetre precision geo-location. The green fraction (GF, the fraction of green area per unit ground area as seen from a given direction) was derived from the images with an automatic segmentation process and the reflectance spectra recorded by the radiometers were transformed into vegetation indices (VI) such as MCARI2 and MTCI. Results showed that MCARI2 is a good proxy of the GF, the MTCI as observed from 57° inclination is expected to be mainly sensitive to leaf chlorophyll pigments. The frequent measurements achieved allowed a good description of the dynamics of each micro-plot along the growth cycle. It is characterised by two periods: the first period corresponding to the vegetative stages exhibits a small rate of change of VI with time; followed by the senescence period characterised by a high rate of change. The dynamics were simply described by a bilinear model with its parameters providing high throughput metrics (HTM). A variance analysis achieved over these HTMs showed that several HTMs were highly heritable, particularly those corresponding to MCARI2 as observed from nadir, and those corresponding to the first period. Potentials of such semi-automatic measurement system are discussed for in field phenotyping applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA