Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 121: 365-383, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084541

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the accumulation of amyloid-ß (Aß) plaques, neuroinflammation, and neuronal death. Besides aging, various comorbidities increase the risk of AD, including obesity, diabetes, and allergic asthma. Epidemiological studies have reported a 2.17-fold higher risk of dementia in asthmatic patients. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown. This study was designed to explore house dust mite (HDM)-induced asthma effects on AD-related brain changes using the AppNL-G-F transgenic mouse model of disease. Male and female 8-9 months old C57BL/6J wild type and AppNL-G-F mice were exposed to no treatment, saline sham, or HDM extract every alternate day for 16 weeks for comparison across genotypes and treatment. Mice were euthanized at the end of the experiment, and broncho-alveolar lavage fluid (BALF), blood, lungs, and brains were collected. BALF was used to quantify immune cell phenotype, cytokine levels, total protein content, lactate dehydrogenase (LDH) activity, and total IgE. Lungs were sectioned and stained with hematoxylin and eosin, Alcian blue, and Masson's trichrome. Serum levels of cytokines and soluble Aß1-40/42 were quantified. Brains were sectioned and immunostained for Aß, GFAP, CD68, and collagen IV. Finally, frozen hippocampi and temporal cortices were used to perform Aß ELISAs and cytokine arrays, respectively. HDM exposure led to increased levels of inflammatory cells, cytokines, total protein content, LDH activity, and total IgE in the BALF, as well as increased pulmonary mucus and collagen staining in both sexes and genotypes. Levels of serum cytokines increased in all HDM-exposed groups. Serum from the AppNL-G-F HDM-induced asthma group also had significantly increased soluble Aß1-42 levels in both sexes. In agreement with this peripheral change, hippocampi from asthma-induced male and female AppNL-G-F mice demonstrated elevated Aß plaque load and increased soluble Aß 1-40/42 and insoluble Aß 1-40 levels. HDM exposure also increased astrogliosis and microgliosis in both sexes of AppNL-G-F mice, as indicated by GFAP and CD68 immunoreactivity, respectively. Additionally, HDM exposure elevated cortical levels of several cytokines in both sexes and genotypes. Finally, HDM-exposed groups also showed a disturbed blood-brain-barrier (BBB) integrity in the hippocampus of AppNL-G-F mice, as indicated by decreased collagen IV immunoreactivity. HDM exposure was responsible for an asthma-like condition in the lungs that exacerbated Aß pathology, astrogliosis, microgliosis, and cytokine changes in the brains of male and female AppNL-G-F mice that correlated with reduced BBB integrity. Defining mechanisms of asthma effects on the brain may identify novel therapeutic targets for asthma and AD.

2.
Microorganisms ; 11(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764200

RESUMO

The broad range of clinical manifestations and life-threatening infections caused by the Gram-positive bacterium, Streptococcus pyogenes or Group A Streptococcus (GAS), remains a significant concern to public health, with a subset of individuals developing neurological complications. Here, we examined the concurrent neuroimmune effects of subcutaneous GAS infections in an HLA-Class II (HLA) transgenic mouse model of subcutaneous GAS infection. To investigate changes in the skin-brain axis, HLA-DQ8 (DQA1*0301/DQB1*0302) mice (DQ8) were randomly divided into three groups: uninfected controls (No Inf), GAS infected and untreated (No Tx), and GAS infected with a resolution by clindamycin (CLN) treatment (CLN Tx) (10 mg/kg/5 days) and were monitored for 16 days post-infection. While the skin GAS burden was significantly reduced by CLN, the cortical and hippocampal GAS burden in the male DQ8 mice was not significantly reduced with CLN. Immunoreactivity to anti-GAS antibody revealed the presence of GAS bacteria in the vicinity of the neuronal nucleus in the neocortex of both No Tx and CLN Tx male DQ8 mice. GAS infection-mediated cortical cytokine changes were modest; however, compared to No Inf or No Tx groups, a significant increase in IL-2, IL-13, IL-22, and IL-10 levels was observed in CLN Tx females despite the lack of GAS burden. Western blot analysis of cortical and hippocampal homogenates showed significantly higher ionized calcium-binding adaptor-1 (Iba-1, microglia marker) protein levels in No Tx females and males and CLN Tx males compared to the No Inf group. Immunohistochemical analysis showed that Iba-1 immunoreactivity in the hippocampal CA3 and CA1 subregions was significantly higher in the CLN Tx males compared to the No Tx group. Our data support the possibility that the subcutaneous GAS infection communicates to the brain and is characterized by intraneuronal GAS sequestration, brain cytokine changes, Iba-1 protein levels, and concurrent CA3 and CA1 subregion-specific microgliosis, even without bacteremia.

3.
RSC Adv ; 13(38): 26392-26405, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37671347

RESUMO

One of the current challenges of working with nanomaterials in bioapplications is having a tool that is biocompatible (non-toxic) and produces stable, intense fluorescence for bioimaging. To address these challenges, we have developed a streamlined and one-pot synthetic route for silicon-based quantum dots (SiQDs) using a hydrothermal method. Part of our unique approach for designing the SiQDs was to incorporate (3-aminopropyl) triethoxysilane (APTES), which is an amphipathic molecule with hydroxyl and amine functional groups available for modification. In order to reduce the toxicity of APTES, we chose glucose as a reducing agent for the reaction. The resulting SiQDs produced potent, stable, potential dual-emissive fluorescence emission peaks in the visible and near-infrared (NIR) ranges. Both peaks could be used as distinguishing fluorescence signals for bioimaging, separately or in combination. The physical and optical properties of the SiQDs were determined under a range of environmental conditions. The morphology, surface composition, and electronic structure of the SiQDs were characterized using high resolution-transmission electronic microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The stability of the SiQDs was evaluated under a wide range of pHs. The biocompatibility and imaging potential of the SiQDs were tested in microvascular endothelial cells (MVEC), neural stem cells (NSC), and RAW 264.7 macrophage cells. The images obtained revealed different subcellular localizations, particularly during cell division, with distinct fluorescence intensities. The results demonstrated that SiQDs are a promising, non-toxic labeling tool for a variety of cell types, with the added advantage of having dual emission peaks both in visible and NIR ranges for bioimaging.

4.
Pathogens ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37623960

RESUMO

Streptococcus pyogenes (Group A Streptococcus, GAS) bacteria cause a spectrum of human diseases ranging from self-limiting pharyngitis and mild, uncomplicated skin infections (impetigo, erysipelas, and cellulitis) to highly morbid and rapidly invasive, life-threatening infections such as streptococcal toxic shock syndrome and necrotizing fasciitis (NF). HLA class II allelic polymorphisms are linked with differential outcomes and severity of GAS infections. The dysregulated immune response and peripheral cytokine storm elicited due to invasive GAS infections increase the risk for toxic shock and multiple organ failure in genetically susceptible individuals. We hypothesized that, while the host immune mediators regulate the immune responses against peripheral GAS infections, these interactions may simultaneously trigger neuropathology and, in some cases, induce persistent alterations in the glial phenotypes. Here, we studied the consequences of peripheral GAS skin infection on the brain in an HLA-II transgenic mouse model of GAS NF with and without treatment with an antibiotic, clindamycin (CLN). Mice expressing the human HLA-II DR3 (DR3) or the HLA-II DR4 (DR4) allele were divided into three groups: (i) uninfected controls, (ii) subcutaneously infected with a clinical GAS strain isolated from a patient with GAS NF, and (iii) GAS-infected with CLN treatment (10 mg/kg/5 days, intraperitoneal). The groups were monitored for 15 days post-infection. Skin GAS burden and lesion area, splenic and hippocampal mRNA levels of inflammatory markers, and immunohistochemical changes in hippocampal GFAP and Iba-1 immunoreactivity were assessed. Skin GAS burden and hippocampal mRNA levels of the inflammatory markers S100A8/A9, IL-1ß, IL-33, inflammasome-related caspase-1 (Casp1), and NLRP6 were elevated in infected DR3 but not DR4 mice. The levels of these markers were significantly reduced following CLN treatment in DR3 mice. Although GAS was not detectable in the brain, astrocyte (GFAP) and microglia (Iba-1) activation were evident from increased GFAP and Iba-1 mRNA levels in DR3 and DR4 mice. However, CLN treatment significantly reduced GFAP mRNA levels in DR3 mice, not DR4 mice. Our data suggest a skin-brain axis during GAS NF, demonstrating that peripherally induced pathological conditions regulate neuroimmune changes and gliotic events in the brain.

5.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511312

RESUMO

Alzheimer's disease (AD) is characterized by progressive cognitive decline and is a leading cause of death in the United States. Neuroinflammation has been implicated in the progression of AD, and several recent studies suggest that peripheral immune dysfunction may influence the disease. Continuing evidence indicates that intestinal dysbiosis is an attribute of AD, and inflammatory bowel disease (IBD) has been shown to aggravate cognitive impairment. Previously, we separately demonstrated that an IBD-like condition exacerbates AD-related changes in the brains of the AppNL-G-F mouse model of AD, while probiotic intervention has an attenuating effect. In this study, we investigated the combination of a dietary probiotic and an IBD-like condition for effects on the brains of mice. Male C57BL/6 wild type (WT) and AppNL-G-F mice were randomly divided into four groups: vehicle control, oral probiotic, dextran sulfate sodium (DSS), and DSS given with probiotics. As anticipated, probiotic treatment attenuated the DSS-induced colitis disease activity index in WT and AppNL-G-F mice. Although probiotic feeding significantly attenuated the DSS-mediated increase in WT colonic lipocalin levels, it was less protective in the AppNL-G-F DSS-treated group. In parallel with the intestinal changes, combined probiotic and DSS treatment increased microglial, neutrophil elastase, and 5hmC immunoreactivity while decreasing c-Fos staining compared to DSS treatment alone in the brains of WT mice. Although less abundant, probiotic combined with DSS treatment demonstrated a few similar changes in AppNL-G-F brains with increased microglial and decreased c-Fos immunoreactivity in addition to a slight increase in Aß plaque staining. Both probiotic and DSS treatment also altered the levels of several cytokines in WT and AppNL-G-F brains, with a unique increase in the levels of TNFα and IL-2 being observed in only AppNL-G-F mice following combined DSS and probiotic treatment. Our data indicate that, while dietary probiotic intervention provides protection against the colitis-like condition, it also influences numerous glial, cytokine, and neuronal changes in the brain that may regulate brain function and the progression of AD.


Assuntos
Doença de Alzheimer , Colite , Doenças Inflamatórias Intestinais , Aplicativos Móveis , Probióticos , Camundongos , Masculino , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/terapia , Colite/complicações , Doenças Inflamatórias Intestinais/complicações , Citocinas , Probióticos/farmacologia , Probióticos/uso terapêutico , Modelos Animais de Doenças , Camundongos Transgênicos
6.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499261

RESUMO

Recently, nano-based cancer therapeutics have been researched and developed, with some nanomaterials showing anticancer properties. When it comes to cancer treatment, graphene quantum dots (GQDs) contain the ability to generate 1O2, a reactive oxidative species (ROS), allowing for the synergistic imaging and photodynamic therapy (PDT) of cancer. However, due to their small particle size, GQDs struggle to remain in the target area for long periods of time in addition to being poor drug carriers. To address this limitation of GQDs, hollow mesoporous silica nanoparticles (hMSNs) have been extensively researched for drug delivery applications. This project investigates the utilization and combination of biomass-derived GQDs and Stöber silica hMSNs to make graphene quantum dots-hollow mesoporous silica nanoparticles (GQDs-hMSNs) for fluorescent imaging and dual treatment of cancer via drug delivery and photodynamic therapy (PDT). Although the addition of hMSNs made the newly synthesized nanoparticles slightly more toxic at higher concentrations, the GQDs-hMSNs displayed excellent drug delivery using fluorescein (FITC) as a mock drug, and PDT treatment by using the GQDs as a photosensitizer (PS). Additionally, the GQDs retained their fluorescence through the surface binding to hMSNs, allowing them to still be used for cell-labeling applications.


Assuntos
Grafite , Nanopartículas , Neoplasias , Fotoquimioterapia , Pontos Quânticos , Humanos , Dióxido de Silício/química , Grafite/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Pontos Quânticos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imagem Óptica
7.
ACS Omega ; 7(43): 38902-38911, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340159

RESUMO

Red and near-infrared emission is a highly desirable feature for fluorescent nanoparticles in biological applications mainly due to longer wavelengths more easily being able to deeply penetrate tissues, organs, skin, and other organic components, while less autofluorescence interference would be produced. Additionally, graphene quantum dots (GQDs) that contain unique optical and electrical features have been targeted for their use in cell labeling applications as well as environmental analysis. Their most desirable features come in the form of low toxicity and biocompatibility; however, GQDs are frequently reported to have blue or green emission light and not the more advantageous red/NIR emission light. Furthermore, porphyrins are a subgroup of heterocyclic macrocycle organic compounds that are also naturally occurring pigments in nature that already contain the desired red-emission fluorescence. Therefore, porphyrins have been used previously to synthesize nanomaterials and for nanoparticle doping in order to incorporate the red/NIR emission light property into particles that otherwise do not contain the desired emission light. Meso-tetra(4-carboxyphenyl)porphine (TCPP) is one type of porphyrin with a large conjugated π-electron system and four carboxyl groups on its exterior benzene rings. These two key characteristics of TCPP make it ideal for incorporation into GQDs, as it would design and synthesize red-emissive material as well as give rise to excellent water solubility. In this work, TCPP is used in tangent with cis-cyclobutane-1,2-dicarboxylic acid (CBDA-2), a biomass derived organic molecule, to synthesize "green" porphyrin-based graphene quantum dots (PGQDs) with red-emission. The obtained PGQDs were characterized by various analytical methods. Utilizing TEM, HRTEM, and DLS the size distribution of the particles was determined to be 7.9 ± 4.1, well within the quantum dot range of 2-10 nm. FT-IR, XPS, and XRD depicted carbon, nitrogen, and oxygen as the main elemental components with carbon being in the form of graphene and the main porphyrin ring of TCPP remaining present in the final PGQDs product. Lastly, absorption and fluorescence spectroscopy determined the excitation wavelength at 420 nm and the emission at 650 nm which was successfully utilized in the imaging of HeLa cells using confocal microscopy.

8.
Cells ; 11(14)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35883681

RESUMO

A multitude of evidence has suggested the differential incidence, prevalence and severity of asthma between males and females. A compilation of recent literature recognized sex differences as a significant non-modifiable risk factor in asthma pathogenesis. Understanding the cellular and mechanistic basis of sex differences remains complex and the pivotal point of this ever elusive quest, which remains to be clarified in the current scenario. Sex steroids are an integral part of human development and evolution while also playing a critical role in the conditioning of the immune system and thereby influencing the function of peripheral organs. Classical perspectives suggest a pre-defined effect of sex steroids, generalizing estrogens popularly under the "estrogen paradox" due to conflicting reports associating estrogen with a pro- and anti-inflammatory role. On the other hand, androgens are classified as "anti-inflammatory," serving a protective role in mitigating inflammation. Although considered mainstream and simplistic, this observation remains valid for numerous reasons, as elaborated in the current review. Women appear immune-favored with stronger and more responsive immune elements than men. However, the remarkable female predominance of diverse autoimmune and allergic diseases contradicts this observation suggesting that hormonal differences between the sexes might modulate the normal and dysfunctional regulation of the immune system. This review illustrates the potential relationship between key elements of the immune cell system and their interplay with sex steroids, relevant to structural cells in the pathophysiology of asthma and many other lung diseases. Here, we discuss established and emerging paradigms in the clarification of observed sex differences in asthma in the context of the immune system, which will deepen our understanding of asthma etiopathology.


Assuntos
Asma , Asma/patologia , Estrogênios , Feminino , Hormônios Esteroides Gonadais , Humanos , Masculino , Sistema Respiratório/patologia , Esteroides
9.
Curr Alzheimer Res ; 19(5): 335-350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35718965

RESUMO

BACKGROUND: There is a well-described mechanism of communication between the brain and gastrointestinal system in which both organs influence the function of the other. This bi-directional communication suggests that disease in either organ may affect function in the other. OBJECTIVE: To assess whether the evidence supports gastrointestinal system inflammatory or degenerative pathophysiology as a characteristic of Alzheimer's disease (AD). METHODS: A review of both rodent and human studies implicating gastrointestinal changes in AD was performed. RESULTS: Numerous studies indicate that AD changes are not unique to the brain but also occur at various levels of the gastrointestinal tract involving both immune and neuronal changes. In addition, it appears that numerous conditions and diseases affecting regions of the tract may communicate to the brain to influence disease. CONCLUSION: Gastrointestinal changes represent an overlooked aspect of AD, representing a more system influence of this disease.


Assuntos
Doença de Alzheimer , Encéfalo , Trato Gastrointestinal , Humanos , Neurônios
10.
ACS Appl Mater Interfaces ; 13(37): 43952-43962, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34495635

RESUMO

Graphene quantum dots (GQDs) are a subset of fluorescent nanomaterials that have gained recent interest due to their photoluminescence properties and low toxicity and biocompatibility features for bioanalysis and bioimaging. However, it is still a challenge to prepare highly near-infrared (NIR) fluorescent GQDs using a facile pathway. In this study, NIR GQDs were synthesized from the biomass-derived organic molecule cis-cyclobutane-1,2-dicarboxylic acid via one-step pyrolysis. The resulting GQDs were then characterized by various analytical methods such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Moreover, the photostability and stability over a wide pH range were also investigated, which indicated the excellent stability of the prepared GQDs. Most importantly, two peaks were found in the fluorescence emission spectra of the GQDs, one of which was located in the NIR region of about 860 nm. Finally, the GQDs were applied for cell imaging with human breast cancer cell line, MCF-7, and cytotoxicity analysis with mouse macrophage cell line, RAW 246.7. The results showed that the GQDs entered the cells through endocytosis on the fluorescence images and were not toxic to the cells up to a concentration of 200 µg/mL. Thus, the developed GQDs could be a potential effective fluorescent bioimaging agent. Finally, the GQDs depicted fluorescence quenching when treated with mercury metal ions, indicating that the GQDs could be used for mercury detection in biological samples as well.


Assuntos
Corantes Fluorescentes/química , Grafite/química , Mercúrio/análise , Pontos Quânticos/química , Animais , Biomassa , Ciclobutanos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Grafite/síntese química , Grafite/toxicidade , Humanos , Células MCF-7 , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Pirólise , Pontos Quânticos/toxicidade , Células RAW 264.7 , Espectrometria de Fluorescência
11.
Cells ; 10(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572019

RESUMO

Mechanisms linking intestinal bacteria and neurodegenerative diseases such as Alzheimer's disease (AD) are still unclear. We hypothesized that intestinal dysbiosis might potentiate AD, and manipulating the microbiome to promote intestinal eubiosis and immune homeostasis may improve AD-related brain changes. This study assessed sex differences in the effects of oral probiotic, antibiotics, and synbiotic treatments in the AppNL-G-F mouse model of AD. The fecal microbiome demonstrated significant correlations between bacterial genera in AppNL-G-F mice and Aß plaque load, gliosis, and memory performance. Female and not male AppNL-G-F mice fed probiotic but not synbiotic exhibited a decrease in Aß plaques, microgliosis, brain TNF-α, and memory improvement compared to no treatment controls. Although antibiotics treatment did not produce these multiple changes in brain cytokines, memory, or gliosis, it did decrease Aß plaque load and colon cytokines in AppNL-G-F males. The intestinal cytokine milieu and splenocyte phenotype of female but not male AppNL-G-F mice indicated a modest proinflammatory innate response following probiotic treatment compared to controls, with an adaptive response following antibiotics treatment in male AppNL-G-F mice. Overall, these results demonstrate the beneficial effects of probiotic only in AppNL-G-F females, with minimal benefits of antibiotics or synbiotic feeding in male or female mice.


Assuntos
Doença de Alzheimer/microbiologia , Microbioma Gastrointestinal/fisiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/microbiologia , Feminino , Gliose/metabolismo , Gliose/microbiologia , Inflamação/metabolismo , Inflamação/microbiologia , Masculino , Memória/fisiologia , Camundongos , Placa Amiloide/metabolismo , Placa Amiloide/microbiologia , Probióticos/farmacologia
12.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299071

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. It is hypothesized to develop due to the dysfunction of two major proteins, amyloid-ß (Aß) and microtubule-associated protein, tau. Evidence supports the involvement of cholesterol changes in both the generation and deposition of Aß. This study was performed to better understand the role of liver cholesterol and bile acid metabolism in the pathophysiology of AD. We used male and female wild-type control (C57BL/6J) mice to compare to two well-characterized amyloidosis models of AD, APP/PS1, and AppNL-G-F. Both conjugated and unconjugated primary and secondary bile acids were quantified using UPLC-MS/MS from livers of control and AD mice. We also measured cholesterol and its metabolites and identified changes in levels of proteins associated with bile acid synthesis and signaling. We observed sex differences in liver cholesterol levels accompanied by differences in levels of synthesis intermediates and conjugated and unconjugated liver primary bile acids in both APP/PS1 and AppNL-G-F mice when compared to controls. Our data revealed fundamental deficiencies in cholesterol metabolism and bile acid synthesis in the livers of two different AD mouse lines. These findings strengthen the involvement of liver metabolism in the pathophysiology of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/fisiologia , Ácidos e Sais Biliares/metabolismo , Modelos Animais de Doenças , Fígado/metabolismo , Presenilina-1/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Signal Transduct Target Ther ; 6(1): 210, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083514

RESUMO

Bitter receptors function primarily in sensing taste, but may also have other functions, such as detecting pathogenic organisms due to their agile response to foreign objects. The mouse taste receptor type-2 member 138 (TAS2R138) is a member of the G-protein-coupled bitter receptor family, which is not only found in the tongue and nasal cavity, but also widely distributed in other organs, such as the respiratory tract, gut, and lungs. Despite its diverse functions, the role of TAS2R138 in host defense against bacterial infection is largely unknown. Here, we show that TAS2R138 facilitates the degradation of lipid droplets (LDs) in neutrophils during Pseudomonas aeruginosa infection through competitive binding with PPARG (peroxisome proliferator-activated receptor gamma) antagonist: N-(3-oxododecanoyl)-L-homoserine lactone (AHL-12), which coincidently is a virulence-bound signal produced by this bacterium (P. aeruginosa). The released PPARG then migrates from nuclei to the cytoplasm to accelerate the degradation of LDs by binding PLIN2 (perilipin-2). Subsequently, the TAS2R138-AHL-12 complex targets LDs to augment their degradation, and thereby facilitating the clearance of AHL-12 in neutrophils to maintain homeostasis in the local environment. These findings reveal a crucial role for TAS2R138 in neutrophil-mediated host immunity against P. aeruginosa infection.


Assuntos
PPAR gama , Perilipina-2 , Infecções por Pseudomonas , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Núcleo Celular/genética , Citoplasma/genética , Homosserina/análogos & derivados , Homosserina/farmacologia , Interações Hospedeiro-Patógeno/imunologia , Gotículas Lipídicas/metabolismo , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Perilipina-2/genética , PPAR gama/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Língua/metabolismo , Língua/microbiologia
14.
J Alzheimers Dis ; 80(2): 761-774, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33554902

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-ß (Aß) plaques, neuroinflammation, and neuronal death. There are several well-established genetic and environmental factors hypothesized to contribute to AD progression including air pollution. However, the molecular mechanisms by which air pollution exacerbates AD are unclear. OBJECTIVE: This study explored the effects of particulate matter exposure on AD-related brain changes using the APP/PS1 transgenic model of disease. METHODS: Male C57BL/6;C3H wild type and APP/PS1 mice were exposed to either filtered air (FA) or particulate matter sized under 2.5µm (PM2.5) for 6 h/day, 5 days/week for 3 months and brains were collected. Immunohistochemistry for Aß, GFAP, Iba1, and CD68 and western blot analysis for PS1, BACE, APP, GFAP, and Iba1 were performed. Aß ELISAs and cytokine arrays were performed on frozen hippocampal and cortical lysates, respectively. RESULTS: The Aß plaque load was significantly increased in the hippocampus of PM2.5-exposed APP/PS1 mice compared to their respective FA controls. Additionally, in the PM2.5-exposed APP/PS1 group, increased astrocytosis and microgliosis were observed as indicated by elevated GFAP, Iba1, and CD68 immunoreactivities. PM2.5 exposure also led to an elevation in the levels of PS1 and BACE in APP/PS1 mice. The cytokines TNF-α, IL-6, IL-1ß, IFN-γ, and MIP-3α were also elevated in the cortices of PM2.5-exposed APP/PS1 mice compared to FA controls. CONCLUSION: Our data suggest that chronic particulate matter exposure exacerbates AD by increasing Aß plaque load, gliosis, and the brain inflammatory status.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo , Gliose , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/patologia , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/patologia
15.
J Alzheimers Dis ; 79(3): 1235-1255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33427741

RESUMO

BACKGROUND: Although it is known that the brain communicates with the gastrointestinal (GI) tract via the well-established gut-brain axis, the influence exerted by chronic intestinal inflammation on brain changes in Alzheimer's disease (AD) is not fully understood. We hypothesized that increased gut inflammation would alter brain pathology of a mouse model of AD. OBJECTIVE: Determine whether colitis exacerbates AD-related brain changes. METHODS: To test this idea, 2% dextran sulfate sodium (DSS) was dissolved in the drinking water and fed ad libitum to male C57BL/6 wild type and AppNL-G-F mice at 6-10 months of age for two cycles of three days each. DSS is a negatively charged sulfated polysaccharide which results in bloody diarrhea and weight loss, changes similar to human inflammatory bowel disease (IBD). RESULTS: Both wild type and AppNL-G-F mice developed an IBD-like condition. Brain histologic and biochemical assessments demonstrated increased insoluble Aß1-40/42 levels along with the decreased microglial CD68 immunoreactivity in DSS treated AppNL-G-F mice compared to vehicle treated AppNL-G-F mice. CONCLUSION: These data demonstrate that intestinal dysfunction is capable of altering plaque deposition and glial immunoreactivity in the brain. This study increases our knowledge of the impact of peripheral inflammation on Aß deposition via an IBD-like model system.


Assuntos
Colite/complicações , Sulfato de Dextrana/farmacologia , Inflamação/complicações , Placa Amiloide/etiologia , Animais , Western Blotting , Colite/induzido quimicamente , Colite/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia
16.
Eur J Case Rep Intern Med ; 7(7): 001605, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32665927

RESUMO

We present a 53-year-old female patient with median arcuate ligament syndrome (MALS), also known as Dunbar syndrome or celiac artery compression syndrome, related to lumbar lordosis and hip dysplasia. She utilized interprofessional management strategies, which were beneficial in reducing lumbar lordosis and MALS-related symptoms. This finding is important because there are no other reports in the literature describing interprofessional strategies to manage symptoms for patients who are waiting for surgery or are not candidates for surgery. LEARNING POINTS: Excessive lumbar lordosis is related to the development of median arcuate ligament syndrome (MALS) due to the greater distance the median arcuate ligament stretches around the vertebral curves, causing compression of the celiac nerves and artery.It is important to consider the effects MALS has on multiple body systems when diagnosing and developing symptom management strategies.Referrals to interprofessional team members can help the patient manage the vast array of symptoms related to MALS.

17.
J Alzheimers Dis ; 76(3): 1083-1102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32623399

RESUMO

BACKGROUND: The intestinal microbiota and its metabolites, particularly short-chain fatty acids (SCFAs), have been implicated in immune function, host metabolism, and even behavior. OBJECTIVE: This study was performed to investigate whether probiotic administration influences levels of intestinal microbiota and their metabolites in a fashion that may attenuate brain changes in a mouse model of Alzheimer's disease (AD). METHODS: C57BL/6 wild-type (WT) mice were compared to AppNL-G-Fmice. The animals were treated with either vehicle or probiotic (VSL#3) for 8 weeks. Fecal microbiome analysis along with Aß, GFAP, Iba-1, c-Fos, and Ki-67 immunohistochemistry was done. SCFAs were analyzed in serum and brains using UPLC-MS/MS. RESULTS: Probiotic (VSL#3) supplementation for 2 months resulted in altered microbiota in both WT and AppNL-G-Fmice. An increase in serum SCFAs acetate, butyrate, and lactate were found in both genotypes following VSL#3 treatment. Propionate and isobutyrate were only increased in AppNL-G-Fmice. Surprisingly, VSL#3 only increased lactate and acetate in brains of AppNL-G-Fmice. No significant differences were observed between vehicle and VSL#3 fed AppNL-G-Fhippocampal immunoreactivities of Aß, GFAP, Iba-1, and Ki-67. However, hippocampal c-Fos staining increased in VSL#3 fed AppNL-G-Fmice. CONCLUSION: These data demonstrate intestinal dysbiosis in the AppNL-G-Fmouse model of AD. Probiotic VSL#3 feeding altered both serum and brain levels of lactate and acetate in AppNL-G-Fmice correlating with increased expression of the neuronal activity marker, c-Fos.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Butiratos/farmacologia , Ácidos Graxos Voláteis/metabolismo , Probióticos/farmacologia , Doença de Alzheimer/induzido quimicamente , Animais , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Transgênicos , Microbiota/efeitos dos fármacos
18.
Front Cell Neurosci ; 14: 200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719587

RESUMO

Aging is a major risk factor for Alzheimer's disease (AD). Insulin-like growth factor-1 receptor (IGF-1R) regulates general aging and lifespan. However, the contribution of IGF-1 to age-related AD pathology and progression is highly controversial. Based on our previous work, AßPP/PS1 double transgenic mice, which express human mutant amyloid precursor protein (APP) and presenilin-1 (PS-1), demonstrated a decrease in brain IGF-1 levels when they were crossed with IGF-1 deficient Ames dwarf mice (df/df). Subsequently, a reduction in gliosis, amyloid-ß (Aß) plaque deposition, and Aß1-40/42 concentrations were observed in this mouse model. This supported the hypothesis that IGF-1 may contribute to the progression of the disease. To assess the role of IGF-1 in AD, 9-10-month-old male littermate control wild type and AßPP/PS1 mice were randomly divided into two treatment groups including control vehicle (DMSO) and picropodophyllin (PPP), a selective, competitive, and reversible IGF-1R inhibitor. The brain penetrant inhibitor was given ip. at 1 mg/kg/day. Mice were sacrificed after 7 days of daily injection and the brains, spleens, and livers were collected to quantify histologic and biochemical changes. The PPP-treated AßPP/PS1 mice demonstrated attenuated insoluble Aß1-40/42. Additionally, an attenuation in microgliosis and protein p-tyrosine levels was observed due to drug treatment in the hippocampus. Our data suggest IGF-1R signaling is associated with disease progression in this mouse model. More importantly, modulation of the brain IGF-1R signaling pathway, even at mid-life, was enough to attenuate aspects of the disease phenotype. This suggests that small molecule therapy targeting the IGF-1R pathway may be viable for late-stage disease treatment.

19.
J Immunol ; 205(2): 469-479, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540994

RESUMO

Allergic asthma (AA) is characterized as a Th2-biased airway inflammation that can develop lung inflammation and remodeling of the respiratory tract. Streptococcus pneumoniae is a major respiratory pathogen, causing noninvasive (otitis media and pneumonia) and invasive diseases (sepsis) in humans. We sought to determine the role of IL-6 in the regulation of lung inflammation in murine AA caused by Aspergillus fumigatus as well as its consequence on the regulation of airway barrier integrity and S. pneumoniae disease. In an AA model, IL-6 deficiency led to increased lung inflammation, eosinophil recruitment, tissue pathology, and collagen deposition. Additionally, IL-6-deficient asthmatic mice exhibited reduced goblet cell hyperplasia and increased TGF-ß production. These key changes in the lungs of IL-6-deficient asthmatic mice resulted in dysregulated tight junction proteins and increased lung permeability. Whereas the host response to AA protected against S. pneumoniae lung disease, the IL-6 deficiency abrogated the protective effect of allergic inflammation against S. pneumoniae pathogenesis. Consistent with in vivo data, IL-6 knockdown by small interfering RNA or the blockade of IL-6R signaling exacerbated the TGF-ß-induced dysregulation of tight junction proteins, E-cadherin and N-cadherin expression, and STAT3 phosphorylation in MLE-12 epithelial cells. Our findings demonstrate a previously unrecognized role of host IL-6 response in the regulation of lung inflammation during AA and the control of S. pneumoniae bacterial disease. A better understanding of the interactions between lung inflammation and barrier framework could lead to the development of therapies to control asthma inflammation and preserve barrier integrity.


Assuntos
Asma/imunologia , Células Caliciformes/patologia , Hipersensibilidade/imunologia , Interleucina-6/metabolismo , Pneumonia Pneumocócica/imunologia , Pneumonia/imunologia , Mucosa Respiratória/metabolismo , Streptococcus pneumoniae/fisiologia , Junções Íntimas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Resistência à Doença , Humanos , Hiperplasia , Interleucina-6/genética , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , Mucosa Respiratória/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/sangue
20.
Neurobiol Aging ; 92: 114-134, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417748

RESUMO

Evidence suggests that changes in intestinal microbiota may affect the central nervous system. However, it is unclear whether alteration of intestinal microbiota affects progression of Alzheimer's disease (AD). To understand this, wild-type control (C57BL/6) mice were compared with the AppNL-G-F model of disease. We used probiotic supplementation to manipulate the gut microbiota. Fecal samples were collected for microbiota profiling. To study brain and intestinal inflammation, biochemical and histological analyses were performed. Altered metabolic pathways were examined by quantifying eicosanoid and bile acid profiles in the brain and serum using ultraperformance liquid chromatography-tandem mass spectrometry. We observed that brain pathology was associated with intestinal dysbiosis and increased intestinal inflammation and leakiness in AppNL-G-F mice. Probiotic supplementation significantly decreased intestinal inflammation and gut permeability with minimal effect on amyloid-ß, cytokine, or gliosis levels in the brain. Concentrations of several bile acids and prostaglandins were altered in the serum and brain because of AD or probiotic supplementation. Our study characterizes intestinal dysfunction in an AD mouse model and the potential of probiotic intervention to ameliorate this condition.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/microbiologia , Encéfalo/metabolismo , Encéfalo/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Probióticos/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Eicosanoides/metabolismo , Feminino , Gliose , Inflamação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA