Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 28(27): 275702, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28525395

RESUMO

The room temperature photoluminescence from ZnO/MgO core/shell nanowires (NWs) grown by a simple two-step vapor transport method was studied for various MgO shell widths (w). Two distinct effects induced by the MgO shell were clearly identified. The first one, related to the ZnO/MgO interface formation, is evidenced by strong enhancements of the zero-phonon and first phonon replica of the excitonic emission, which are accompanied by a total suppression of its second phonon replica. This effect can be explained by the reduction of the band bending within the ZnO NW core that follows the removal of atmospheric adsorbates and associated surface traps during the MgO growth process on one hand, and a reduced exciton-phonon coupling as a result of the mechanical stabilization of the outermost ZnO NW monolayers by the MgO shell on the other hand. The second effect is the gradual increase of the excitonic emission and decrease in the defect related emission by up to two and one orders of magnitude, respectively, when w is increased in the ∼3-17 nm range. Uniaxial strain build-up within the ZnO NW core with increasing w, as detected by x-ray diffraction measurements, and photocarrier tunneling escape from the ZnO core through the MgO shell enabled by defect-states are proposed as possible mechanisms involved in this effect. These findings are expected to be of key significance for the efficient design and fabrication of ZnO/MgO NW heterostructures and devices.

2.
Nanotechnology ; 27(42): 425501, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27622391

RESUMO

We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 µA cm(-2) mM(-1) in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes.

3.
Opt Express ; 22(5): 5341-9, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663874

RESUMO

Tunable second harmonic (SH) polaritons have been efficiently generated in ZnO nanocombs, when the material is excited close to half of the band-gap. The nonlinear signal couples to the nanocavity modes, and, as a result, Fabry-Pérot resonances with high Q factors of about 500 are detected. Due to the low effective volume of the confined modes, matter-light interaction is very much enhanced. This effect lowers the velocity of the SH polariton in the material by 50 times, and increases the SH confinement inside the nanocavity due to this higher refractive index. We also show that the SH phase-matching condition is achieved through LO-phonon mediation. Finally, birrefringence of the crystal produces a strong SH intensity dependence on the input polarization, with a high polarization contrast, which could be used as a mechanism for light switching in the nanoscale.

4.
Nanotechnology ; 25(3): 035705, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24356615

RESUMO

ZnO/MgO (core/shell) nanowires (NWs) grown by a two-step vapour transport method under different MgO shell growth conditions are examined by x-ray diffraction, photoluminescence (PL) excitation and temperature (10-300 K) dependent PL. The excitonic-to-defect PL ratio is increased by more than two orders of magnitude in the core/shell as compared to bare ZnO NWs. Concomitantly, a strong depression of the PL thermal quenching, most particularly for the visible part of the PL spectrum, occurs. Using a semi-quantitative model, results are interpreted as a strong radiative to non-radiative lifetime ratio reduction due to defect passivation at the ZnO NW walls and photocarrier confinement within the ZnO core by the MgO shell. These beneficial effects are, however, significantly weakened when metal interdiffusion across the core/shell interface is favoured during the shell growth. Non-radiative recombination lifetime in the sample with sharp core/shell interface is described by a single activation energy of 15 meV (bound exciton release). For interdiffused cases and bare ZnO an additional activation energy of 60 meV (free exciton breakup) is observed.

5.
Nanotechnology ; 23(27): 275602, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22706726

RESUMO

Vertically aligned ZnO nanowires (NWs) were grown on Au-nanocluster-seeded amorphous SiO(2) films by the advective transport and deposition of Zn vapours obtained from the carbothermal reaction of graphite and ZnO powders. Both the NW volume and visible-to-UV photoluminescence ratio were found to be strong functions of, and hence could be tailored by, the (ZnO+C) source-SiO(2) substrate distance. We observe C flakes on the ZnO NWs/SiO(2) substrates which exhibit short NWs that developed on both sides. The SiO(2) and C substrates/NW interfaces were studied in detail to determine growth mechanisms. NWs on Au-seeded SiO(2) were promoted by a rough ZnO seed layer whose formation was catalysed by the Au clusters. In contrast, NWs grew without any seed on C. A correlation comprising three orders of magnitude between the visible-to-UV photoluminescence intensity ratio and the NW volume is found, which results from a characteristic Zn partial pressure profile that fixes both O deficiency defect concentration and growth rate.


Assuntos
Carbono/química , Cristalização/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Dióxido de Silício/química , Óxido de Zinco/química , Gases/química , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
6.
J Phys Condens Matter ; 23(50): 505302, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22129528

RESUMO

Synchrotron x-ray absorption spectroscopy (XAS) and electron spin resonance (ESR) experiments were performed to determine, in combination with Raman spectroscopy and x-ray diffraction (XRD) data from previous reports, the structure and paramagnetic defect status of Si-nanoclusters (ncls) at various intermediate formation stages in Si-rich Si oxide films having different Si concentrations (y = 0.36-0.42 in Si(y)O(1-y)), fabricated by electron cyclotron resonance plasma-enhanced chemical vapor deposition and isochronally (2 h) annealed at various temperatures (T(a) = 900-1100 °C) under either Ar or (Ar + 5%H(2)) atmospheres. The corresponding emission properties were studied by stationary and time dependent photoluminescence (PL) spectroscopy in correlation with the structural and defect properties. To explain the experimental data, we propose crystallization by nucleation within already existing amorphous Si-ncls as the mechanism for the formation of the Si nanocrystals in the oxide matrix. The cluster-size dependent partial crystallization of Si-ncls at intermediate T(a) can be qualitatively understood in terms of a 'crystalline core-amorphous shell' Si-ncl model. The amorphous shell, which is invisible in most diffraction and electron microscopy experiments, is found to have an important impact on light emission. As the crystalline core grows at the expense of a thinning amorphous shell with increasing T(a), the PL undergoes a transition from a regime dominated by disorder-induced effects to a situation where quantum confinement of excitons prevails.


Assuntos
Elétrons , Nanoestruturas/química , Silício/química , Gases/química , Fenômenos Magnéticos , Fenômenos Ópticos , Óxidos/química , Análise Espectral , Temperatura , Volatilização
7.
Nanotechnology ; 21(13): 134007, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20208111

RESUMO

GaAs nanowire (NW)-based p-n photovoltaic devices, with two distinct p and n spatial distributions and where Te was the n-dopant, have been studied by impedance spectroscopy in the 10(3)-10(7) Hz frequency range and the - 1.5-1.5 V bias range. For a large n-core/p-shell overlap region within NWs in a coaxial geometry, the p-n junction properties (DC rectification and p-n depletion capacitance) are found to prevail. The impedance data at low bias for both NW devices show large frequency dispersions with relaxation frequencies that are compatible with carrier re-emission times from traps due to GaAs surface states. An increasing conductance with increasing frequency for low bias is observed, suggesting hopping transport through localized states. For large bias the conductance increases exponentially with bias and is frequency independent, indicating conduction through extended states in this regime.

8.
Phys Rev B Condens Matter ; 52(7): 4974-4985, 1995 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9981682
10.
Phys Rev Lett ; 61(18): 2125-2128, 1988 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-10038990
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA