Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 29(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38131179

RESUMO

Drynaria rhizome is a herbal medicine used for strengthening bones and treating bone diseases in East Asia. Although obesity is considered to benefit bone formation, it has been revealed that visceral fat accumulation can promote osteoporosis. Given the complex relationship between bone metabolism and obesity, bone­strengthening medicines should be evaluated while considering the effects of obesity. The present study investigated the effects of Drynaria rhizome extract (DRE) on high­fat diet (HFD)­induced obese mice. DRE was supplemented with the HFD. Body weight, food intake, the expression levels of lipogenesis transcription factors, including sterol regulatory element binding protein (SREBP)­1, peroxisome proliferator­activated receptor (PPAR)­Î³ and adenosine monophosphate­activated protein kinase (AMPK)­α, and AMPK activation were evaluated. Mice fed DRE and a HFD exhibited reduced body weight without differences in food intake compared with those in the HFD group. Furthermore, DRE; upregulated AMPK­α of epididymal one; down­regulated SREBP­1 and PPAR­Î³, as determined using western blotting and quantitative polymerase chain reaction, respectively. Decreased lipid accumulation were observed in both fat pad and liver of HFD­fed mice, which were suppressed by DRE treatment. These results demonstrated the potential of DRE as a dietary natural product for strengthening bones and managing obesity.


Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Camundongos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Rizoma , Extratos Vegetais/farmacologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Peso Corporal , Camundongos Endogâmicos C57BL , Fármacos Antiobesidade/farmacologia , Camundongos Obesos
2.
Sci Rep ; 12(1): 4154, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264693

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is usually correlated with metabolic diseases, such as obesity, insulin resistance, and hyperglycemia. Herein, we investigated the inhibitory effects and underlying governing mechanism of clitorin in a western diet (WD)-induced hepatic steatosis mouse model, and in oleic acid-stimulated HepG2 cells. Male C57BL/6 mice were fed a normal diet, WD, WD + 10 or 20 mg/kg orlistat, and WD + 10 or 20 mg/kg clitorin. HepG2 cells were treated with 1 mM oleic acid to induce lipid accumulation with or without clitorin. Clitorin significantly alleviated body weight gain and hepatic steatosis features (NAFLD activity score, micro-, and macro-vesicular steatosis) in WD-induced hepatic steatosis mice. Additionally, clitorin significantly decreased protein expressions of sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα) in WD-induced hepatic steatosis mice. Moreover, clitorin significantly diminished the mRNA levels of SREBP1, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and enhanced the mRNA levels of peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyltranserase-1 (CTP-1), as well as adenosine monophosphate-activated protein kinase (AMPK) in the liver of WD-induced hepatic steatosis mice and oleic acid-stimulated HepG2 cells. Overall, our findings demonstrated that clitorin can be a potentially efficacious candidate for NAFLD management.


Assuntos
Lipogênese , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Glicosídeos , Células Hep G2 , Humanos , Quempferóis , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , RNA Mensageiro/metabolismo
3.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576066

RESUMO

Papain is a proteolytic enzyme present in the leaves, fruits, roots, and latex of the Carica papaya (papaya) plant. Although it exhibits a wide range of activities, there are no reports on the anti-obesity effects of papain. This study examined the anti-obesity effect and obesity-involved anti-inflammatory mechanism of papain in in vivo and in vitro models using high-fat diet (HFD)-induced obese mice and 3T3-L1 preadipocytes. Oral administration of papain reduced HFD-induced weight of the body, liver, and adipose tissues of mice. Papain also reduced hepatic lipid accumulation and adipocyte size. Moreover, serum total cholesterol and triglyceride levels were markedly reduced in papain-treated mice. In addition, papain inhibited the differentiation of preadipocytes and oil accumulation in 3T3-L1 preadipocytes and rat primary preadipocytes. Mechanistically, papain significantly downregulated the protein levels of key adipogenesis regulators and reversed the expression of pro-inflammatory cytokines and adipokines in HFD-induced obese mice and 3T3-L1 preadipocytes. Papain also markedly enhanced activation of the AMP-activated protein kinase pathway in both models. Collectively, these results suggest that papain exerts anti-obesity effects in HFD-induced mice and 3T3-L1 preadipocytes by regulating levels of adipogenic factors involved in lipid metabolism and inflammation; thus, it could be useful in the prevention and treatment of obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/patologia , Dieta Hiperlipídica , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/patologia , Papaína/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipocinas/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fígado Gorduroso/patologia , Proteína Forkhead Box O1/metabolismo , Hipertrofia , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Tamanho do Órgão/efeitos dos fármacos , Sirtuína 1/metabolismo
4.
Nutrients ; 13(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34578872

RESUMO

Obesity remains a continuing global health concern, as it is associated with an increased risk of many chronic diseases. Atractylodes chinensis Koidz. (Ac) is traditionally used in the treatment of inflammatory diseases, such as arthritis, hepatitis, and gastric ulcers. Despite the diverse pharmacological activities of Ac, scientific evidence for the use of Ac in obesity is still limited. Therefore, the present study aimed to determine the anti-obesity effects of Ac. C57BL/6N mice were divided into five groups as follows: chow diet group (CON), 45% HFD group, HFD + oral administration of orlistat group, and HFD + oral administration of Ac groups. RT-PCR and western blotting were used to examine the expression of molecules relating to obesity progression. Ac-administered mice showed dramatically decreased body weight and weight gain compared to the high-fat diet (HFD)-fed mice. In addition, Ac administration attenuated the protein expression levels of adipogenic transcription factors in the white adipose tissue (WAT) and livers of HFD-fed mice. Furthermore, Ac administration declined the expression levels of lipogenic genes, while enhancing those of the fatty acid oxidation genes in the WAT of HFD-fed mice. Importantly, Ac administration highly upregulated the AMP-activated kinase (AMPK) and sirtuin 1 (SIRT1) expression levels in WAT of the HFD-induced obese mouse model. Our results provide evidence that Ac can effectively ameliorate weight gain and adipose tissue expansion.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Atractylodes/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/genética , Água
5.
Biomed Pharmacother ; 141: 111838, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34182414

RESUMO

Obesity is known as metabolic syndrome and it affects many tissues including adipose tissue, liver, and central nervous system (CVS). Gambi-jung (GBJ) is a modified prescription of Taeumjowi-tang (TJT), which has been used to treat obesity in Korea. GBJ is composed of 90% Ephedra sinica Stapf (ES). Therefore, the present study was designed to assess the antiobesity effects of GBJ and to compare the effects of GBJ and ES on obesity. GBJ administration remarkably reduced the body weight, Body mass index (BMI), and body fat percentage compared to the ES administration in human subjects. GBJ-treated mice had lower white adipose tissue (WAT) amounts than ES-treated mice. GBJ and ES administration enhanced adenosine monophosphate-activated protein kinase (AMPK) expression in 3T3-L1 adipocytes, epididymal WAT and liver of HFD-induced obese mice. Moreover, GBJ and ES reduced food intake by suppressing the mRNA levels of orexigenic peptides, agouti-related protein (AgRP) and neuropeptide-Y (NPY), as well as AMPK in the brain of HFD-induced obese mice. Furthermore, GBJ-treated mice had dramatically lower expression of macrophage marker F4/80 in epididymal WAT than those of ES-treated mice. Based on these results, we suggest the use of GBJ as a natural drug to control weight gain.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Obesidade/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Células 3T3-L1 , Tecido Adiposo Branco/efeitos dos fármacos , Adulto , Idoso , Animais , Depressores do Apetite/química , Depressores do Apetite/farmacologia , Composição Corporal/efeitos dos fármacos , Índice de Massa Corporal , Ingestão de Alimentos/efeitos dos fármacos , Ephedra sinica/química , Efedrina/química , Efedrina/farmacologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Redução de Peso/efeitos dos fármacos
6.
Biomed Res Int ; 2020: 8851010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33313321

RESUMO

The global obesity epidemic has nearly doubled since 1980, and this increasing prevalence is threatening public health. It has been reported that natural products could contain potential functional ingredients that may assist in preventing obesity. Bojungchiseub-tang (BJT), mentioned in the Donguibogam as an herbal medication for the treatment of edema, a symptom of obesity, consists of eleven medicinal herbs. However, the pharmacological activity of BJT has not been investigated. The present study was designed to investigate the putative effect of BJT on the adipogenesis of 3T3-L1 cells and the weight gain of high-fat diet (HFD-) fed C57BL/6 mice. Oil Red O staining was conducted to examine the amount of lipids in 3T3-L1 adipocytes. Male C57BL/6 mice were divided into three groups: standard diet group (control, CON), 45% HFD group (HFD), and HFD supplemented with 10% of BJT (BJT). The expression levels of genes and proteins related to adipogenesis in cells, WAT, and liver were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. We found that BJT treatment significantly decreased the protein and mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) in a dose-dependent manner in differentiated 3T3-L1 cells. Similar to the results of the in vitro experiment, BJT suppressed HFD-induced weight gain in an obese mouse model. In addition, BJT effectively reduced the HFD-induced epididymal adipose tissue weight/body weight index. BJT also downregulated the mRNA levels of PPARγ, C/EBPα, and SREBP1 in the epididymal adipose and liver tissue of HFD-fed obese mice. These findings suggest that BJT induces weight loss by affecting adipogenic transcription factors.


Assuntos
Adipócitos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Epididimo/efeitos dos fármacos , Obesidade/tratamento farmacológico , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Animais , Peso Corporal , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Sobrevivência Celular , Dieta Hiperlipídica , Epididimo/metabolismo , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , República da Coreia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Mediators Inflamm ; 2020: 3164239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848508

RESUMO

A hypernomic reaction or an abnormal inflammatory process could cause a series of diseases, such as cardiovascular disease, neurodegeneration, and cancer. Additionally, oxidative stress has been identified to induce severe tissue injury and inflammation. Carpesium cernuum L. (C. cernuum) is a Chinese folk medicine used for its anti-inflammatory, analgesic, and detoxifying properties. However, the underlying molecular mechanism of C. cernuum in inflammatory and oxidative stress conditions remains largely unknown. The aim of this study was to examine the effects of a methanolic extract of C. cernuum (CLME) on lipopolysaccharide- (LPS-) induced RAW 264.7 mouse macrophages and a sepsis mouse model. The data presented in this study indicated that CLME inhibited LPS-induced production of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 cells. CLME treatment also reduced reactive oxygen species (ROS) generation and enhanced the expression of heme oxygenase-1 (HO-1) protein in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Moreover, CLME treatment abolished the nuclear translocation of nuclear factor-κB (NF-κB), enhanced the activation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), and reduced the expression of extracellular signal-related kinase (ERK) and ERK kinase (MEK) phosphorylation in LPS-stimulated RAW 264.7 cells. These outcomes implied that CLME could be a potential antioxidant and anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Asteraceae/metabolismo , Lipopolissacarídeos/metabolismo , Extratos Vegetais/farmacologia , Sepse/metabolismo , Animais , Dinoprostona/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Metanol , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Células RAW 264.7 , Espécies Reativas de Oxigênio , Sais de Tetrazólio/química , Tiazóis/química
8.
Nutrients ; 11(5)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137609

RESUMO

Obesity is one of major health challenges in the industrial world. Although rice hull has been reported to show various bioactivities, no studies have evaluated its anti-obesity effect. We hope to demonstrate the anti-obesity effect of rice hull extract (RHE) and the underlying mechanism in high-fat diet (HFD)-induced obese mice and 3T3-L1 preadipocytes. Serum lipid profiles were determined by enzymatic methods. Histological analysis of liver and epididymis fat tissues was carried out with hematoxylin and eosin stain. The mRNA expression of adipogenic markers was analyzed with qRT-PCR and western blotting. Oral administration of RHE reduced body weight gain and fat accumulation in HFD-fed mice. RHE also reduced lipid accumulation by inhibiting the mRNA expression of adipogenic-related genes in HFD-fed obese mice and differentiated preadipocytes. The downregulation of adipogenesis by RHE was mediated through the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). In addition, RHE induced the phosphorylation of c-Jun N-terminal kinases (JNK) and extracellular-signal-regulated kinases (ERK) in liver and epididymis adipose tissues of HFD-fed obese mice. Taken together, these findings indicate that RHE could inhibit the differentiation of adipose cell and prevent HFD-induced obesity, suggesting its potential in the prevention of obesity and metabolic syndrome and related-disorders.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Obesidade/prevenção & controle , Oryza , Extratos Vegetais/farmacologia , Sementes , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/genética , Animais , Fármacos Antiobesidade/isolamento & purificação , Modelos Animais de Doenças , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/sangue , Obesidade/patologia , Obesidade/fisiopatologia , Oryza/química , Fosforilação , Extratos Vegetais/isolamento & purificação , Sementes/química , Transdução de Sinais , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA