Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
JACS Au ; 4(1): 150-163, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38274250

RESUMO

Mucin-1 (MUC1) glycopeptides are exceptional candidates for potential cancer vaccines. However, their autoantigenic nature often results in a weak immune response. To overcome this drawback, we carefully engineered synthetic antigens with precise chemical modifications. To be effective and stimulate an anti-MUC1 response, artificial antigens must mimic the conformational dynamics of natural antigens in solution and have an equivalent or higher binding affinity to anti-MUC1 antibodies than their natural counterparts. As a proof of concept, we have developed a glycopeptide that contains noncanonical amino acid (2S,3R)-3-hydroxynorvaline. The unnatural antigen fulfills these two properties and effectively mimics the threonine-derived antigen. On the one hand, conformational analysis in water shows that this surrogate explores a landscape similar to that of the natural variant. On the other hand, the presence of an additional methylene group in the side chain of this analog compared to the threonine residue enhances a CH/π interaction in the antigen/antibody complex. Despite an enthalpy-entropy balance, this synthetic glycopeptide has a binding affinity slightly higher than that of its natural counterpart. When conjugated with gold nanoparticles, the vaccine candidate stimulates the formation of specific anti-MUC1 IgG antibodies in mice and shows efficacy comparable to that of the natural derivative. The antibodies also exhibit cross-reactivity to selectively target, for example, human breast cancer cells. This investigation relied on numerous analytical (e.g., NMR spectroscopy and X-ray crystallography) and biophysical techniques and molecular dynamics simulations to characterize the antigen-antibody interactions. This workflow streamlines the synthetic process, saves time, and reduces the need for extensive, animal-intensive immunization procedures. These advances underscore the promise of structure-based rational design in the advance of cancer vaccine development.

3.
Nat Commun ; 14(1): 5785, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723184

RESUMO

Soluble HMW1C-like N-glycosyltransferases (NGTs) catalyze the glycosylation of Asn residues in proteins, a process fundamental for bacterial autoaggregation, adhesion and pathogenicity. However, our understanding of their molecular mechanisms is hindered by the lack of structures of enzymatic complexes. Here, we report structures of binary and ternary NGT complexes of Aggregatibacter aphrophilus NGT (AaNGT), revealing an essential dyad of basic/acidic residues located in the N-terminal all α-domain (AAD) that intimately recognizes the Thr residue within the conserved motif Asn0-X+1-Ser/Thr+2. Poor substrates and inhibitors such as UDP-galactose and UDP-glucose mimetics adopt non-productive conformations, decreasing or impeding catalysis. QM/MM simulations rationalize these results, showing that AaNGT follows a SN2 reaction mechanism in which the acceptor asparagine uses its imidic form for catalysis and the UDP-glucose phosphate group acts as a general base. These findings provide key insights into the mechanism of NGTs and will facilitate the design of structure-based inhibitors to treat diseases caused by non-typeable H. influenzae or other Gram-negative bacteria.


Assuntos
Asparagina , Proteínas de Bactérias , Glicosilação , Proteínas de Bactérias/genética , Haemophilus influenzae , Glucose , Difosfato de Uridina
4.
Nat Commun ; 13(1): 4324, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882872

RESUMO

Mucinases of human gut bacteria cleave peptide bonds in mucins strictly depending on the presence of neighboring O-glycans. The Akkermansia muciniphila AM0627 mucinase cleaves specifically in between contiguous (bis) O-glycans of defined truncated structures, suggesting that this enzyme may recognize clustered O-glycan patches. Here, we report the structure and molecular mechanism of AM0627 in complex with a glycopeptide containing a bis-T (Galß1-3GalNAcα1-O-Ser/Thr) O-glycan, revealing that AM0627 recognizes both the sugar moieties and the peptide sequence. AM0627 exhibits preference for bis-T over bis-Tn (GalNAcα1-O-Ser/Thr) O-glycopeptide substrates, with the first GalNAc residue being essential for cleavage. AM0627 follows a mechanism relying on a nucleophilic water molecule and a catalytic base Glu residue. Structural comparison among mucinases identifies a conserved Tyr engaged in sugar-π interactions in both AM0627 and the Bacteroides thetaiotaomicron BT4244 mucinase as responsible for the common activity of these two mucinases with bis-T/Tn substrates. Our work illustrates how mucinases through tremendous flexibility adapt to the diversity in distribution and patterns of O-glycans on mucins.


Assuntos
Glicoproteínas , Polissacarídeos , Carboidratos , Glicopeptídeos/química , Humanos , Intestinos , Mucinas/química , Polissacarídeo-Liases , Polissacarídeos/química , República da Coreia , Açúcares
5.
Nat Commun ; 13(1): 2398, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504880

RESUMO

C1GalT1 is an essential inverting glycosyltransferase responsible for synthesizing the core 1 structure, a common precursor for mucin-type O-glycans found in many glycoproteins. To date, the structure of C1GalT1 and the details of substrate recognition and catalysis remain unknown. Through biophysical and cellular studies, including X-ray crystallography of C1GalT1 complexed to a glycopeptide, we report that C1GalT1 is an obligate GT-A fold dimer that follows a SN2 mechanism. The binding of the glycopeptides to the enzyme is mainly driven by the GalNAc moiety while the peptide sequence provides optimal kinetic and binding parameters. Interestingly, to achieve glycosylation, C1GalT1 recognizes a high-energy conformation of the α-GalNAc-Thr linkage, negligibly populated in solution. By imposing this 3D-arrangement on that fragment, characteristic of α-GalNAc-Ser peptides, C1GalT1 ensures broad glycosylation of both acceptor substrates. These findings illustrate a structural and mechanistic blueprint to explain glycosylation of multiple acceptor substrates, extending the repertoire of mechanisms adopted by glycosyltransferases.


Assuntos
Glicopeptídeos , Mucinas , Sequência de Aminoácidos , Cristalografia por Raios X , Glicopeptídeos/química , Glicosilação , Mucinas/metabolismo
6.
JACS Au ; 2(3): 631-645, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35373202

RESUMO

The large family of polypeptide GalNAc-transferases (GalNAc-Ts) controls with precision how GalNAc O-glycans are added in the tandem repeat regions of mucins (e.g., MUC1). However, the structural features behind the creation of well-defined and clustered patterns of O-glycans in mucins are poorly understood. In this context, herein, we disclose the full process of MUC1 O-glycosylation by GalNAc-T2/T3/T4 isoforms by NMR spectroscopy assisted by molecular modeling protocols. By using MUC1, with four tandem repeat domains as a substrate, we confirmed the glycosylation preferences of different GalNAc-Ts isoforms and highlighted the importance of the lectin domain in the glycosylation site selection after the addition of the first GalNAc residue. In a glycosylated substrate, with yet multiple acceptor sites, the lectin domain contributes to orientate acceptor sites to the catalytic domain. Our experiments suggest that during this process, neighboring tandem repeats are critical for further glycosylation of acceptor sites by GalNAc-T2/T4 in a lectin-assisted manner. Our studies also show local conformational changes in the peptide backbone during incorporation of GalNAc residues, which might explain GalNAc-T2/T3/T4 fine specificities toward the MUC1 substrate. Interestingly, we postulate that a specific salt-bridge and the inverse γ-turn conformation of the PDTRP sequence in MUC1 are the main structural motifs behind the GalNAc-T4 specificity toward this region. In addition, in-cell analysis shows that the GalNAc-T4 isoform is the only isoform glycosylating the Thr of the immunogenic epitope PDTRP in vivo, which highlights the relevance of GalNAc-T4 in the glycosylation of this epitope. Finally, the NMR methodology established herein can be extended to other glycosyltransferases, such as C1GalT1 and ST6GalNAc-I, to determine the specificity toward complex mucin acceptor substrates.

7.
J Am Chem Soc ; 144(12): 5284-5294, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293206

RESUMO

Antibody-drug conjugates (ADCs) are a class of targeted therapeutics used to selectively kill cancer cells. It is important that they remain intact in the bloodstream and release their payload in the target cancer cell for maximum efficacy and minimum toxicity. The development of effective ADCs requires the study of factors that can alter the stability of these therapeutics at the atomic level. Here, we present a general strategy that combines synthesis, bioconjugation, linker technology, site-directed mutagenesis, and modeling to investigate the influence of the site and microenvironment of the trastuzumab antibody on the stability of the conjugation and linkers. Trastuzumab is widely used to produce targeted ADCs because it can target with high specificity a receptor that is overexpressed in certain breast cancer cells (HER2). We show that the chemical environment of the conjugation site of trastuzumab plays a key role in the stability of linkers featuring acid-sensitive groups such as acetals. More specifically, Lys-207, located near the reactive Cys-205 of a thiomab variant of the antibody, may act as an acid catalyst and promote the hydrolysis of acetals. Mutation of Lys-207 into an alanine or using a longer linker that separates this residue from the acetal group stabilizes the conjugates. Analogously, Lys-207 promotes the beneficial hydrolysis of the succinimide ring when maleimide reagents are used for conjugation, thus stabilizing the subsequent ADCs by impairing the undesired retro-Michael reactions. This work provides new insights for the design of novel ADCs with improved stability properties.


Assuntos
Antineoplásicos , Imunoconjugados , Acetais , Antineoplásicos/química , Antineoplásicos/farmacologia , Imunoconjugados/química , Maleimidas/química , Mutação , Compostos de Sulfidrila/química , Trastuzumab/química
8.
Angew Chem Int Ed Engl ; 60(19): 10850-10857, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513271

RESUMO

Widely used reagents in the peptide functionalization toolbox, Michael acceptors and N-hydroxysuccinimide (NHS) activated esters, are combined in NHS-activated acrylamides for efficient chemoselective amino-sulfhydryl stapling on native peptides and proteins. NHS-activated acrylamides allow for a fast functionalization of N-terminal cysteines (k2 =1.54±0.18×103  M-1 s-1 ) under dilute aqueous conditions, enabling selectivity over other nucleophilic amino acids. Additionally, the versatility of these new bioconjugation handles was demonstrated in the cross-linking of in-chain or C-terminal cysteines with nearby lysine residues. NHS-activated acrylamides are compatible with the use of other cysteine selective reagents, allowing for orthogonal dual-modifications. This strategy was successfully applied to the late-stage functionalization of peptides and proteins with a PEG unit, fluorescent probe, and cytotoxic agent. The level of molecular control offered by NHS-activated acrylamides is expected to promote amino-sulfhydryl stapling technology as a powerful strategy to design functional bioconjugates.

10.
Nat Chem Biol ; 16(3): 351-360, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932717

RESUMO

Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHT178R↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3 or FGF23 results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3 glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide substrates. GalNAc-T3 uses a lectin domain mediated mechanism to glycosylate Thr178 requiring previous glycosylation at Thr171. Notably, Thr178 is a poor substrate site with limiting glycosylation due to substrate clashes leading to destabilization of the catalytic domain flexible loop. We suggest GalNAc-T3 specificity for FGF23 and its ability to control circulating levels of intact FGF23 is achieved by FGF23 being a poor substrate. GalNAc-T3's structure further reveals the molecular bases for reported disease-causing mutations. Our findings provide an insight into how GalNAc-T isoenzymes achieve isoenzyme-specific nonredundant functions.


Assuntos
Fatores de Crescimento de Fibroblastos/química , N-Acetilgalactosaminiltransferases/metabolismo , Animais , Células CHO , Cricetulus , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glicopeptídeos/química , Glicosilação , Humanos , Isoenzimas/metabolismo , Lectinas/metabolismo , N-Acetilgalactosaminiltransferases/fisiologia , Treonina/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
11.
J Phys Chem Lett ; 10(12): 3339-3345, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31141365

RESUMO

Understanding the conformational preferences of carbohydrates is crucial to explain the interactions with their biological targets and to improve their use as therapeutic agents. We present experimental data resolving the conformational landscape of the monosaccharide d-lyxose, for which quantum mechanical (QM) calculations offer model-dependent results. This study compares the structural preferences in the gas phase, determined by rotational spectroscopy, with those in solution, resolved by nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations. In contrast to QM calculations, d-lyxose adopts only pyranose forms in the gas phase, with the α-anomer exhibiting both the 4C1 and 1C4 chairs (60:40). The predominantly populated ß-anomer shows the 4C1 form exclusively, as determined experimentally by isotopic substitution. In aqueous solution, the pyranose forms are also dominant. However, in contrast to the gas phase, the α-anomer as 1C4 chair is the most populated, and its solvation is more effective than for the ß derivative. Markedly, the main conformers found in the gas phase and solution are characterized by the lack of the stabilizing anomeric effect. From a mechanistic perspective, both rotational spectroscopy and solid-state nuclear magnetic resonance (NMR) corroborate that αâ€¯â†”â€¯ß or furanose ↔ pyranose interconversions are prevented in the gas phase. Combining microwave (MW) and NMR results provides a powerful method for unraveling the water role in the conformational preferences of challenging molecules, such as flexible monosaccharides.

12.
Angew Chem Int Ed Engl ; 58(20): 6640-6644, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30897271

RESUMO

Quaternized vinyl- and alkynyl-pyridine reagents were shown to react in an ultrafast and selective manner with several cysteine-tagged proteins at near-stoichiometric quantities. We have demonstrated that this method can effectively create a homogenous antibody-drug conjugate that features a precise drug-to-antibody ratio of 2, which was stable in human plasma and retained its specificity towards Her2+ cells. Finally, the developed warhead introduces a +1 charge to the overall net charge of the protein, which enabled us to show that the electrophoretic mobility of the protein may be tuned through the simple attachment of a quaternized vinyl pyridinium reagent at the cysteine residues. We anticipate the generalized use of quaternized vinyl- and alkynyl-pyridine reagents not only for bioconjugation, but also as warheads for covalent inhibition and as tools to profile cysteine reactivity.

13.
J Am Chem Soc ; 141(9): 4063-4072, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30726084

RESUMO

GalNAc-glycopeptides derived from mucin MUC1 are an important class of tumor-associated antigens. α- O-glycosylation forces the peptide to adopt an extended conformation in solution, which is far from the structure observed in complexes with a model anti-MUC1 antibody. Herein, we propose a new strategy for designing potent antigen mimics based on modulating peptide/carbohydrate interactions by means of O → S/Se replacement at the glycosidic linkage. These minimal chemical modifications bring about two key structural changes to the glycopeptide. They increase the carbohydrate-peptide distance and change the orientation and dynamics of the glycosidic linkage. As a result, the peptide acquires a preorganized and optimal structure suited for antibody binding. Accordingly, these new glycopeptides display improved binding toward a representative anti-MUC1 antibody relative to the native antigens. To prove the potential of these glycopeptides as tumor-associated MUC1 antigen mimics, the derivative bearing the S-glycosidic linkage was conjugated to gold nanoparticles and tested as an immunogenic formulation in mice without any adjuvant, which resulted in a significant humoral immune response. Importantly, the mice antisera recognize cancer cells in biopsies of breast cancer patients with high selectivity. This finding demonstrates that the antibodies elicited against the mimetic antigen indeed recognize the naturally occurring antigen in its physiological context. Clinically, the exploitation of tumor-associated antigen mimics may contribute to the development of cancer vaccines and to the improvement of cancer diagnosis based on anti-MUC1 antibodies. The methodology presented here is of general interest for applications because it may be extended to modulate the affinity of biologically relevant glycopeptides toward their receptors.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/imunologia , Neoplasias da Mama/microbiologia , Carboidratos/imunologia , Glicopeptídeos/imunologia , Oxigênio/imunologia , Animais , Anticorpos Monoclonais/química , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carboidratos/química , Desenho de Fármacos , Feminino , Glicopeptídeos/química , Glicosídeos/química , Glicosídeos/imunologia , Glicosilação , Humanos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Oxigênio/química , Selênio/química , Selênio/imunologia , Enxofre/química , Enxofre/imunologia
14.
Nat Protoc ; 14(1): 86-99, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30470819

RESUMO

There is considerable interest in the development of chemical methods for the precise, site-selective modification of antibodies for therapeutic applications. In this protocol, we describe a strategy for the irreversible and selective modification of cysteine residues on antibodies, using functionalized carbonylacrylic reagents. This protocol is based on a thiol-Michael-type addition of native or engineered cysteine residues to carbonylacrylic reagents equipped with functional compounds such as cytotoxic drugs. This approach is a robust alternative to the conventional maleimide technique; the reaction is irreversible and uses synthetically accessible reagents. Complete conversion to the conjugates, with improved quality and homogeneity, is often achieved using a minimal excess (typically between 5 and 10 equiv.) of the carbonylacrylic reagent. Potential applications of this method cover a broad scope of cysteine-tagged antibodies in various formats (full-length IgGs, nanobodies) for the site-selective incorporation of cytotoxic drugs without loss of antigen-binding affinity. Both the synthesis of the carbonylacrylic reagent armed with a synthetic molecule of interest and the subsequent preparation of the chemically defined, homogeneous antibody conjugate can be achieved within 48 h and can be easily performed by nonspecialists. Importantly, the conjugates formed are stable in human plasma. The use of liquid chromatography-mass spectrometry (LC-MS) analysis is recommended for monitoring the progression of the bioconjugation reactions on protein and antibody substrates with accurate resolution.


Assuntos
Acrilatos/química , Métodos Analíticos de Preparação de Amostras , Cisteína/química , Imunoconjugados/química , Imunoglobulinas/química , Anticorpos de Domínio Único/química , Cromatografia Líquida , Reagentes de Ligações Cruzadas/química , Humanos , Imunoconjugados/isolamento & purificação , Imunoglobulinas/isolamento & purificação , Maleimidas/química , Anticorpos de Domínio Único/isolamento & purificação , Espectrometria de Massas em Tandem
15.
ACS Cent Sci ; 4(9): 1274-1290, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30276263

RESUMO

Mucin-type O-glycosylation is initiated by a family of polypeptide GalNAc-transferases (GalNAc-Ts) which are type-II transmembrane proteins that contain Golgi luminal catalytic and lectin domains that are connected by a flexible linker. Several GalNAc-Ts, including GalNAc-T4, show both long-range and short-range prior glycosylation specificity, governed by their lectin and catalytic domains, respectively. While the mechanism of the lectin-domain-dependent glycosylation is well-known, the molecular basis for the catalytic-domain-dependent glycosylation of glycopeptides is unclear. Herein, we report the crystal structure of GalNAc-T4 bound to the diglycopeptide GAT*GAGAGAGT*TPGPG (containing two α-GalNAc glycosylated Thr (T*), the PXP motif and a "naked" Thr acceptor site) that describes its catalytic domain glycopeptide GalNAc binding site. Kinetic studies of wild-type and GalNAc binding site mutant enzymes show the lectin domain GalNAc binding activity dominates over the catalytic domain GalNAc binding activity and that these activities can be independently eliminated. Surprisingly, a flexible loop protruding from the lectin domain was found essential for the optimal activity of the catalytic domain. This work provides the first structural basis for the short-range glycosylation preferences of a GalNAc-T.

16.
J Am Chem Soc ; 140(31): 9952-9960, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30004703

RESUMO

The tumor-associated carbohydrate Tn antigens include two variants, αGalNAc- O-Thr and αGalNAc- O-Ser. In solution, they exhibit dissimilar shapes and dynamics and bind differently to the same protein receptor. Here, we demonstrate experimentally and theoretically that their conformational preferences in the gas phase are highly similar, revealing the essential role of water. We propose that water molecules prompt the rotation around the glycosidic linkage in the threonine derivative, shielding its hydrophobic methyl group and allowing an optimal solvation of the polar region of the antigen. The unusual arrangement of αGalNAc- O-Thr features a water molecule bound into a "pocket" between the sugar and the threonine. This mechanism is supported by trapping, for the first time, such localized water in the crystal structures of an antibody bound to two glycopeptides that comprise fluorinated Tn antigens in their structure. According to several reported X-ray structures, installing oxygenated amino acids in specific regions of the receptor capable of displacing the bridging water molecule to the bulk-solvent may facilitate the molecular recognition of the Tn antigen with threonine. Overall, our data also explain how water fine-tunes the 3D structure features of similar molecules, which in turn are behind their distinct biological activities.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Água/química , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular
17.
Chemistry ; 24(31): 7991-8000, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603441

RESUMO

A series of fluorescent d-cysteines (Cys) has been synthesized and their optical properties were studied. The key synthetic step is the highly diastereoselective 1,4-conjugate addition of aryl thiols to a chiral bicyclic dehydroalanine recently developed by our group. This reaction is fast at room temperature and proceeds with total chemo- and stereoselectivity. The Michael adducts were easily transformed into the corresponding amino acids to study their optical properties and, in some selected cases, into the corresponding N-Fmoc-d-cysteine derivatives to be used in solid-phase peptide synthesis (SPPS). To further demonstrate the utility of these non-natural Cys-derived fluorescent amino acids, the coumaryl and dansyl derivatives were incorporated into cell-penetrating peptide sequences through standard SPPS and their optical properties were studied in different cell lines. The internalization of these fluorescent peptides was monitored by fluorescence microscopy.


Assuntos
Peptídeos Penetradores de Células/síntese química , Cisteína/química , Corantes Fluorescentes/síntese química , Sobrevivência Celular , Peptídeos Penetradores de Células/metabolismo , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Imagem Óptica/métodos , Técnicas de Síntese em Fase Sólida , Espectrometria de Fluorescência
18.
Chemistry ; 24(33): 8382-8392, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29601100

RESUMO

The family of polypeptide N-acetylgalactosamine (GalNAc) transferases (GalNAc-Ts) orchestrates the initiating step of mucin-type protein O-glycosylation by transfer of GalNAc moieties to serine and threonine residues in proteins. Deficiencies and dysregulation of GalNAc-T isoenzymes are related to different diseases. Recently, it has been demonstrated that an inactive GalNAc-T2 mutant (F104S), which is not located at the active site, induces low levels of high-density lipoprotein cholesterol (HDL-C) in humans. Herein, the molecular basis for F104S mutant inactivation has been deciphered. Saturation transfer difference NMR spectroscopy experiments demonstrate that the mutation induces loss of binding to peptide substrates. Analysis of the crystal structure of the F104S mutant bound to UDP-GalNAc (UDP=uridine diphosphate), combined with molecular dynamics (MD) simulations, has revealed that the flexible loop is disordered and displays larger conformational changes in the mutant enzyme than that in the wild-type (WT) enzyme. 19 F NMR spectroscopy experiments reveal that the WT enzyme only reaches the active state in the presence of UDP-GalNAc, which provides compelling evidence that GalNAc-T2 adopts a UDP-GalNAc-dependent induced-fit mechanism. The F104S mutation precludes the enzyme from achieving the active conformation and concomitantly binding peptide substrates. This study provides new insights into the catalytic mechanism of the large family of GalNAc-Ts and how these enzymes orchestrate protein O-glycosylation.


Assuntos
Mucina-1/análise , Mucina-1/química , Mucinas/química , N-Acetilgalactosaminiltransferases/análise , N-Acetilgalactosaminiltransferases/química , Difosfato de Uridina/química , Catálise , Domínio Catalítico , Glicosilação , Humanos , Simulação de Dinâmica Molecular , Polipeptídeo N-Acetilgalactosaminiltransferase
19.
Chembiochem ; 19(1): 48-52, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29105291

RESUMO

We present a new peptide-macrocyclization strategy with an isobutylene graft. The reaction is mild and proceeds rapidly and efficiently both for linear and cyclic peptides. The resulting isobutylene-grafted peptides possess improved passive membrane permeability due to the shielding of the polar backbone of the amides, as demonstrated by NMR spectroscopy and molecular dynamics simulations. The isobutylene-stapled structures are fully stable in human plasma and in the presence of glutathione. This strategy can be applied to bioactive cyclic peptides such as somatostatin. Importantly, we found that structural preorganization forced by the isobutylene graft leads to a significant improvement in binding. The combined advantages of directness, selectivity, and smallness could allow application to peptide macrocyclization based on this attachment of the isobutylene graft.


Assuntos
Alcenos/química , Peptídeos/metabolismo , Ciclização , Glutationa/química , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/sangue , Peptídeos/química , Peptídeos Cíclicos/sangue , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Permeabilidade , Ligação Proteica , Estrutura Terciária de Proteína
20.
Nat Commun ; 8(1): 1959, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208955

RESUMO

The polypeptide GalNAc-transferases (GalNAc-Ts), that initiate mucin-type O-glycosylation, consist of a catalytic and a lectin domain connected by a flexible linker. In addition to recognizing polypeptide sequence, the GalNAc-Ts exhibit unique long-range N- and/or C-terminal prior glycosylation (GalNAc-O-Ser/Thr) preferences modulated by the lectin domain. Here we report studies on GalNAc-T4 that reveal the origins of its unique N-terminal long-range glycopeptide specificity, which is the opposite of GalNAc-T2. The GalNAc-T4 structure bound to a monoglycopeptide shows that the GalNAc-binding site of its lectin domain is rotated relative to the homologous GalNAc-T2 structure, explaining their different long-range preferences. Kinetics and molecular dynamics simulations on several GalNAc-T2 flexible linker constructs show altered remote prior glycosylation preferences, confirming that the flexible linker dictates the rotation of the lectin domain, thus modulating the GalNAc-Ts' long-range preferences. This work for the first time provides the structural basis for the different remote prior glycosylation preferences of the GalNAc-Ts.


Assuntos
N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Quimera/genética , Clonagem Molecular , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Cinética , Lectinas/química , Lectinas/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , N-Acetilgalactosaminiltransferases/genética , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Polipeptídeo N-Acetilgalactosaminiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA