Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1031064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439844

RESUMO

Soil microbiota plays a significant role in plant development and health and appears to be a major component of certain forms of grapevine decline. A greenhouse experiment was conducted to study the impact of the microbiological quality of the soil and grapevine rootstock genotype on the root microbial community and development of young plants. Two rootstocks heterografted with the same scion were grown in two vineyard soils differing in microbial composition and activities. After 4 months, culture-dependent approaches and amplicon sequencing of bacterial 16S rRNA gene and fungal ITS were performed on roots, rhizosphere and bulk soil samples. The root mycorrhizal colonization and number of cultivable microorganisms in the rhizosphere compartment of both genotypes were clearly influenced by the soil status. The fungal diversity and richness were dependent on the soil status and the rootstock, whereas bacterial richness was affected by the genotype only. Fungal genera associated with grapevine diseases were more abundant in declining soil and related root samples. The rootstock affected the compartmentalization of microbial communities, underscoring its influence on microorganism selection. Fluorescence in situ hybridization (FISH) confirmed the presence of predominant root-associated bacteria. These results emphasized the importance of rootstock genotype and soil composition in shaping the microbiome of young vines.

2.
Appl Microbiol Biotechnol ; 106(8): 3113-3137, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435457

RESUMO

Endophytic strains belonging to the Bacillus cereus group were isolated from the halophytes Atriplex halimus L. (Amaranthaceae) and Tamarix aphylla L. (Tamaricaceae) from costal and continental regions in Algeria. Based on their salt tolerance (up to 5%), the strains were tested for their ability to alleviate salt stress in tomato and wheat. Bacillus sp. strain BH32 showed the highest potential to reduce salinity stress (up to + 50% and + 58% of dry weight improvement, in tomato and wheat, respectively, compared to the control). To determine putative mechanisms involved in salt tolerance and plant growth promotion, the whole genome of Bacillus sp. BH32 was sequenced, annotated, and used for comparative genomics against the genomes of closely related strains. The pangenome of Bacillus sp. BH32 and its closest relative was further analyzed. The phylogenomic analyses confirmed its taxonomic position, a member of the Bacillus cereus group, with intergenomic distances (GBDP analysis) pinpointing to a new taxon (digital DNA-DNA hybridization, dDDH < 70%). Genome mining unveiled several genes involved in stress tolerance, production of anti-oxidants and genes involved in plant growth promotion as well as in the production of secondary metabolites. KEY POINTS : • Bacillus sp. BH32 and other bacterial endophytes were isolated from halophytes, to be tested on tomato and wheat and to limit salt stress adverse effects. • The strain with the highest potential was then studied at the genomic level to highlight numerous genes linked to plant growth promotion and stress tolerance. • Pangenome approaches suggest that the strain belongs to a new taxon within the Bacillus cereus group.


Assuntos
Bacillus , Solanum lycopersicum , Bacillus/genética , DNA , Endófitos/genética , Solanum lycopersicum/microbiologia , Estresse Salino , Plantas Tolerantes a Sal , Triticum/microbiologia
3.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184168

RESUMO

Soil microbiota has increasingly been shown to play an integral role in viticulture resilience. The emergence of new metagenomic and culturomic technologies has led to significant advances in the study of microbial biodiversity. In the agricultural sector, soil and plant microbiomes have been found to significantly improve resistance to environmental stressors and diseases, as well as influencing crop yields and fruit quality thus improving sustainability under shifting environments. Grapevines are usually cultivated as a scion grafted on rootstocks, which are selected according to pedoclimatic conditions and cultural practices, known as terroir. The rootstock connects the surrounding soil to the vine's aerial part and impacts scion growth and berry quality. Understanding rootstock and soil microbiome dynamics is a relevant and important field of study, which may be critical to improve viticulture sustainability and resilience. This review aims to highlight the relationship between grapevine roots and telluric microbiota diversity and activity. In addition, this review explores the concept of core microbiome regarding potential applications of soil microbiome engineering with the goal of enhancing grapevine adaptation to biotic and abiotic stress.

4.
Microorganisms ; 9(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442645

RESUMO

Fungus-bacterium interactions are widespread, encompass multiple interaction types from mutualism to parasitism, and have been frequent targets for microbial inoculant development. In this study, using in vitro systems combined with confocal laser scanning microscopy and real-time quantitative PCR, we test whether the nitrogen-fixing bacterium Kosakonia radicincitans can provide protection to the plant-beneficial fungus Serendipita indica, which inhabits the rhizosphere and colonizes plants as an endophyte, from the fungus-feeding bacterium Collimonas fungivorans. We show that K. radicincitans can protect fungal hyphae from bacterial feeding on solid agar medium, with probable mechanisms being quick hyphal colonization and biofilm formation. We furthermore find evidence for different feeding modes of K. radicincitans and C. fungivorans, namely "metabolite" and "hyphal feeding", respectively. Overall, we demonstrate, to our knowledge, the first evidence for a bacterial, biofilm-based protection of fungal hyphae against attack by a fungus-feeding, bacterial predator on solid agar medium. Besides highlighting the importance of tripartite microbial interactions, we discuss implications of our results for the development and application of microbial consortium-based bioprotectants and biostimulants.

5.
Microorganisms ; 9(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34442850

RESUMO

Since 2013, Xylella fastidiosa Wells et al. has been reported to infect several hosts and to be present in different areas of Europe. The main damage has been inflicted on the olive orchards of southern Apulia (Italy), where a severe disease associated with X. fastidiosa subspecies pauca strain De Donno has led to the death of millions of trees. This dramatic and continuously evolving situation has led to European and national (Italian and Spanish) measures being implemented to reduce the spread of the pathogen and the associated olive quick decline syndrome (OQDS). Research has been also carried out to find solutions to better and directly fight the bacterium and its main insect vector, Philaenus spumarius L. In the course of this frantic effort, several treatments based on chemical or biological substances have been tested, in addition to plant breeding techniques and integrated pest management approaches. This review aims to summarize the attempts made so far and describe the prospects for better management of this serious threat, which poses alarming questions for the future of olive cultivation in the Mediterranean basin and beyond.

6.
J Fungi (Basel) ; 7(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210025

RESUMO

In the last few years, trunk surgery has gained increasing attention as a method to reduce foliar symptoms typical of some of the Esca complex diseases. The technique relies on the mechanical removal of decayed wood by a chainsaw. A study on a 14-year-old Cabernet Sauvignon vineyard was carried out to validate the efficacy of trunk surgery and explore possible explanations behind it. Three levels of treatment were applied to three of the most characteristic symptoms associated with some diseases of the Esca complex, such as leaf stripe symptoms (LS), wilted shoots (WS) and apoplexy (APP). The most promising results were obtained by complete trunk surgery, where the larger decay removal allowed lower symptom re-expression. According to the wood types analyzed (decay, medium and sound wood), different changes in microbiota were observed. Alpha-diversity generally decreased for bacteria and increased for fungi. More specifically, main changes were observed for Fomitiporia mediterranea abundance that decreased considerably after trunk surgery. A possible explanation for LS symptom reduction after trunk surgery could be the microbiota shifting caused by the technique itself affecting a microbic-shared biochemical pathway involved in symptom expression.

7.
Environ Microbiol ; 23(10): 6104-6121, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288352

RESUMO

Fungi are considered to cause grapevine trunk diseases such as esca that result in wood degradation. For instance, the basidiomycete Fomitiporia mediterranea (Fmed) is overabundant in white rot, a key type of wood-necrosis associated with esca. However, many bacteria colonize the grapevine wood too, including the white rot. In this study, we hypothesized that bacteria colonizing grapevine wood interact, possibly synergistically, with Fmed and enhance the fungal ability to degrade wood. We isolated 237 bacterial strains from esca-affected grapevine wood. Most of them belonged to the families Xanthomonadaceae and Pseudomonadaceae. Some bacterial strains that degrade grapevine-wood components such as cellulose and hemicellulose did not inhibit Fmed growth in vitro. We proved that the fungal ability to degrade wood can be strongly influenced by bacteria inhabiting the wood. This was shown with a cellulolytic and xylanolytic strain of the Paenibacillus genus, which displays synergistic interaction with Fmed by enhancing the degradation of wood structures. Genome analysis of this Paenibacillus strain revealed several gene clusters such as those involved in the expression of carbohydrate-active enzymes, xylose utilization and vitamin metabolism. In addition, certain other genetic characteristics of the strain allow it to thrive as an endophyte in grapevine and influence the wood degradation by Fmed. This suggests that there might exist a synergistic interaction between the fungus Fmed and the bacterial strain mentioned above, enhancing grapevine wood degradation. Further step would be to point out its occurrence in mature grapevines to promote esca disease development.


Assuntos
Basidiomycota , Vitis , Bactérias/genética , Humanos , Doenças das Plantas/microbiologia , Vitis/microbiologia , Madeira/microbiologia
8.
Microorganisms ; 9(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198479

RESUMO

Beneficial insects and mites, including generalist predators of the family Miridae, are widely used in biocontrol programs against many crop pests, such as whiteflies, aphids, lepidopterans and mites. Mirid predators frequently complement their carnivore diet by feeding plant sap with their piercing-sucking mouthparts. This implies that mirids may act as vectors of phytopathogenic and beneficial microorganisms, such as plant growth-promoting bacterial endophytes. This work aimed at understanding the role of two beneficial mirids (Macrolophus pygmaeus and Nesidiocoris tenuis) in the acquisition and transmission of two plant growth-promoting bacteria, Paraburkholderia phytofirmans strain PsJN (PsJN) and Enterobacter sp. strain 32A (32A). Both bacterial strains were detected on the epicuticle and internal body of both mirids at the end of the mirid-mediated transmission. Moreover, both mirids were able to transmit PsJN and 32A between tomato plants and these bacterial strains could be re-isolated from tomato shoots after mirid-mediated transmission. In particular, PsJN and 32A endophytically colonised tomato plants and moved from the shoots to roots after mirid-mediated transmission. In conclusion, this study provided novel evidence for the acquisition and transmission of plant growth-promoting bacterial endophytes by beneficial mirids.

9.
Front Plant Sci ; 12: 649694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790931

RESUMO

Grapevine trunk diseases (GTDs) are a serious and growing threat to vineyards worldwide. The need for innovative control tools persists since pesticides used against some GTDs have been banned and only methods to prevent infections or to reduce foliar symptoms have been developed so far. In this context, the application of imaging methods, already applied to study plant-microbe interactions, represents an interesting approach to understand the effect of experimental treatments applied to reduce fungal colonization, on GTD-related pathogens activity. To this aim, trials were carried out to evaluate the efficacy of copper-based treatments, formulated with hydroxyapatite (HA) as co-adjuvant with innovative delivery properties, loaded with two different copper(II) compounds (tribasic sulfate and sulfate pentahydrate), and applied to grapevine propagation material to inhibit fungal wood colonization. The treated rootstock (Vitis berlandieri × Vitis riparia cv. K5BB) and scion cuttings (Vitis vinifera L., cv. Chardonnay) had been inoculated with a strain of Phaeoacremonium minimum (Pmi) compared to uninoculated rootstocks. Experimental treatments were applied during the water-soaking process, comparing the copper(II) compounds pure or formulated with HA, to hydrate the cuttings. After callusing, grafted vines were grown under greenhouse conditions in a nursery and inoculated with Pmi::gfp7 or with Pmi wild-type. Fifteen weeks post-inoculation, woody tissues close to the inoculation site were sampled to evaluate the efficiency of the treatments by studying the plant-microbe interaction by confocal laser scanning microscopy (CLSM). Copper and further elements were also quantified in the same tissues immediately after the treatments and on the CLSM samples. Finally, the grapevine defense responses were studied in the leaves of cuttings treated with the same formulations. The present investigation confirmed the relevant interaction of Pmi and the related transformed strain on the vascular tissues of grafted vines. Furthermore, in vitro assay revealed (i) the fungistatic effect of HA and the reduced effect of Cu fungicide when combined with HA. In planta assays showed (ii) the reduction of Pmi infection in propagation material treated with HA-Cu formulations, (iii) the movement of HA-Cu formulations inside the plant tissues and their persistence over time, and (iv) the plant defense reaction following the treatment with pure HA or Cu, or combined.

10.
New Phytol ; 230(4): 1594-1608, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33341934

RESUMO

The tree seed mycobiome has received little attention despite its potential role in forest regeneration and health. The aim of the present study was to analyze the processes shaping the composition of seed fungal communities in natural forests as seeds transition from the mother plant to the ground for establishment. We used metabarcoding approaches and confocal microscopy to analyze the fungal communities of seeds collected in the canopy and on the ground in four natural populations of sessile oak (Quercus petraea). Ecological processes shaping the seed mycobiome were inferred using joint species distribution models. Fungi were present in seed internal tissues, including the embryo. The seed mycobiome differed among oak populations and trees within the same population. Its composition was largely influenced by the mother, with weak significant environmental influences. The models also revealed several probable interactions among fungal pathogens and mycoparasites. Our results demonstrate that maternal effects, environmental filtering and biotic interactions all shape the seed mycobiome of sessile oak. They provide a starting point for future research aimed at understanding how maternal genes and environments interact to control the vertical transmission of fungal species that could then influence seed dispersal and germination, and seedling recruitment.


Assuntos
Micobioma , Quercus , Florestas , Herança Materna , Sementes , Árvores
11.
Environ Microbiol ; 23(4): 1812-1829, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955144

RESUMO

The plant endosphere is colonized by complex microbial communities and microorganisms, which colonize the plant interior at least part of their lifetime and are termed endophytes. Their functions range from mutualism to pathogenicity. All plant organs and tissues are generally colonized by bacterial endophytes and their diversity and composition depend on the plant, the plant organ and its physiological conditions, the plant growth stage as well as on the environment. Plant-associated microorganisms, and in particular endophytes, have lately received high attention, because of the increasing awareness of the importance of host-associated microbiota for the functioning and performance of their host. Some endophyte functions are known from mostly lab assays, genome prediction and few metagenome analyses; however, we have limited understanding on in planta activities, particularly considering the diversity of micro-environments and the dynamics of conditions. In our review, we present recent findings on endosphere environments, their physiological conditions and endophyte colonization. Furthermore, we discuss microbial functions, the interaction between endophytes and plants as well as methodological limitations of endophyte research. We also provide an outlook on needs of future research to improve our understanding on the role of microbiota colonizing the endosphere on plant traits and ecosystem functioning.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Endófitos , Desenvolvimento Vegetal , Raízes de Plantas , Plantas
12.
J Fungi (Basel) ; 6(4)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138048

RESUMO

The soil-borne fungus Dactylonectria torresensis is the most common causal agent of black-foot disease in Europe. However, there is a lack of understanding on how this fungus can provoke plant symptoms. In this study, we sequenced, annotated and analyzed the genomes of three isolates of D. torresensis collected from asymptomatic vine, weed and soil. Sequenced genomes were further compared to those of 27 fungal species including root and aerial pathogens, white rot degraders, indoor biodeterioration agents, saprotrophs, dark septate endophytes and mycorrhiza. Strains of D. torresensis present genomes with between 64 and 65 Mbp and with up to 18,548 predicted genes for each strain. Average Nucleotide Identity (ANI) shows that strains are different according to genome contents. Clusters of orthologous groups were compared, and clusters of genes related to necroses were particularly detected in all strains of D. torresensis (necrosis inducing peptides and proteins, and ethylene inducing peptides) as well as several genes involved in resistance against fungicides frequently used in viticulture such as copper. Interestingly, an expanded high number of genes related to carbohydrate-active enzymes were detected in each Dactylonectria strain, especially those related to glycoside hydrolases that could be involved in penetration of plant tissues or pathogenicity. An increased number of candidate genes for CAZyme classes AA9 and AA3-1 supports the ability of strains to efficiently degrade plant material. High numbers of genes of D. torresensis related to secretome and small secreted proteins were further characterized. Moreover, the presence of several gene clusters such as fujikurin-like genes was detected and were normally found in Fusariumfujikuroi, that have been linked to fungal pathogenicity. The phenotypes of the three strains investigated showed further difference in light response. We found that Dactylonectria strains have an increased number of photoreceptor encoding genes and we showed sequence alterations. Altogether, the results highlight several gene clusters present in D. torresensis strains that could be linked to endophytic lifestyle, pathogenicity, plant maceration and degradation of plant tissues as well as adaptation to soil contaminated with metals and metalloids and light response.

13.
Front Plant Sci ; 11: 582267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042195

RESUMO

Plant growth-promoting bacteria (PGPB) are promising alternatives in the reduction of the use of chemical fertilizers. Likewise, humic acid (HA) can improve plant growth and/or the establishment of endophytic PGPB. Although the effects of PGPB colonization or HA treatment have been studied separately, little information is available on plant response to the combined applications of PGPB and HA. Thus, the aim of this work was to understand the physiological effects, bacterial colonization and transcriptional responses activated by endophytic bacterial strains in tomato roots and shoots in the absence (control condition) and presence of HA (HA condition). Tomato shoot length was promoted by seed inoculation with Paraburkholderia phytofirmans PsJN, Pantoea agglomerans D7G, or Enterobacter sp. 32A in the presence of HA, indicating a possible complementation of PGPB and HA effects. Tomato colonization by endophytic bacterial strains was comparable in the control and HA condition. The main transcriptional regulations occurred in tomato roots and the majority of differentially expressed genes (DEGs) was upregulated by endophytic bacterial strains in the HA condition. Half of the DEGs was modulated by two or three strains as possible common reactions to endophytic bacterial strains, involving protein metabolism, transcription, transport, signal transduction, and defense. Moreover, strain-specific tomato responses included the upregulation of signal transduction, transcription, hormone metabolism, protein metabolism, secondary metabolism, and defense processes, highlighting specific traits of the endophyte-tomato interaction. The presence of HA enhanced the upregulation of genes related to signal transduction, hormone metabolism, transcription, protein metabolism, transport, defense, and growth-related processes in terms of number of involved genes and fold change values. This study provides detailed information on HA-dependent enhancement of growth-related processes stimulated by endophytic bacterial strains in tomato plants and reports the optimized dosages, complementation properties and gene markers for the further development of efficient PGPB- and HA-based biostimulants.

14.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961710

RESUMO

The worldwide increase in grapevine trunk diseases, mainly esca, represents a major threat for vineyard sustainability. Biocontrol of a pioneer fungus of esca, Phaeomoniella chlamydospora, was investigated here by deciphering the tripartite interaction between this trunk-esca pathogen, grapevine and the biocontrol-oomycete, Pythium oligandrum. When P. oligandrum colonizes grapevine roots, it was observed that the wood necroses caused by P. chlamydospora were significantly reduced. Transcriptomic analyses of plant and fungus responses were performed to determine the molecular events occurring, with the aim to relate P.chlamydospora degradation of wood to gene expression modulation. Following P. oligandrum-root colonization, major transcriptomic changes occurred both, in the grapevine-defense system and in the P. chlamydospore-virulence factors. Grapevine-defense was enhanced in response to P. chlamydospora attacks, with P. oligandrum acting as a plant-systemic resistance inducer, promoting jasmonic/ethylene signaling pathways and grapevine priming. P. chlamydospora pathogenicity genes, such as those related to secondary metabolite biosynthesis, carbohydrate-active enzymes and transcription regulators, were also affected in their expression. Shifts in grapevine responses and key-fungal functions were associated with the reduction of P. chlamydospora wood necroses. This study provides evidence of wood fungal pathogen transcriptional changes induced by a root biocontrol agent, P. oligandrum, in which there is no contact between the two microorganisms.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Resistência à Doença , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Pythium/crescimento & desenvolvimento , Vitis/microbiologia
15.
Environ Microbiol ; 22(12): 5189-5206, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32755016

RESUMO

Esca, a major grapevine trunk disease in old grapevines, is associated with the colonization of woody tissues by a broad range of plant pathogenic fungi. To identify which fungal and bacterial species are involved in the onset of this disease, we analysed the microbiota from woody tissues of young (10-year-old) grapevines at an early stage of esca. Using meta-barcoding, 515 fungal and 403 bacterial operational taxonomic units (OTUs) were identified in woody tissues. In situ hybridization showed that these fungi and bacteria co-inhabited in grapevine woody tissues. In non-necrotic woody tissues, fungal and bacterial microbiota varied according to organs and seasons but not diseased plant status. Phaeomoniella chlamydospora, involved in the Grapevine trunk disease, was the most abundant species in non-necrotic tissues from healthy plants, suggesting a possible non-pathogenic endophytic behaviour. Most diseased plants (70%) displayed cordons, with their central white-rot necrosis colonized essentially by two plant pathogenic fungi (Fomitiporia mediterranea: 60%-90% and P. chlamydospora: 5%-15%) and by a few bacterial taxa (Sphingomonas spp. and Mycobacterium spp.). The occurrence of a specific association of fungal and bacterial species in cordons from young grapevines expressing esca-foliar symptoms strongly suggests that that microbiota is involved in the onset of this complex disease.


Assuntos
Microbiota , Doenças das Plantas/microbiologia , Vitis/microbiologia , Madeira/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Estruturas Vegetais/microbiologia , Estações do Ano
16.
Front Plant Sci ; 11: 1170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849725

RESUMO

Trichoderma strains used in biological control products usually exhibit high efficiency in the control of plant diseases. However, their behavior under field conditions is difficult to predict. In addition, the potential of indigenous strains has been poorly assayed as well as their possible behavior as endophytes. Hence, niche colonization is a key feature for an effective protection. In this study, we aimed to: (i) explore the possibility of using a new Trichoderma strain isolated from vine to control pathogens, (ii) study the in planta interaction with the pathogen Phaeoacremonium minimum W. Gams, Crous, M.J. Wingf. & L. Mugnai (formerly Phaeoacremonium aleophilum), a pioneer fungus involved in Grapevine Trunk Diseases (GTDs) such as esca. For this purpose, fluorescently tagged Trichoderma sp. T154 and a P. minimum strain were used for scanning electron microscopy and confocal scanning laser microscopy analyses. Data showed that the Trichoderma strain is able to colonize plants up to 12 weeks post inoculation and is located in xylem, fibers, as well as in parenchymatic tissues inside the wood. The beneficial fungus reduced colonization of the esca-related pathogen colonizing the same niches. The main observed mechanism involved in biocontrol of Trichoderma against the esca pathogen was spore adhesion, niche exclusion and only few typical hypha coiling was found between Trichoderma and the pathogen. These results suggest that the Trichoderma strain has potential for reducing the colonization of Phaeoacremonium minimum and thus, an inoculation of this biological control agent can protect the plant by limiting the development of GTD, and the strain can behave as an endophyte.

17.
Microbiol Res ; 240: 126556, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32683279

RESUMO

The synergistic interaction between arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) can enhance growth and phosphorous uptake in plants. Since PSBs are well known hyphal colonizers we sought to understand this physical interaction and exploit it in order to design strategies for the application of a combined microbial inoculum. Phosphate-solubilizing bacteria strongly attached to the hyphae of Rhizoglomus irregulare were isolated using a two compartment system (root and hyphal compartments), which were separated by a nylon mesh through which AMF hyphae could pass but not plant roots. Allium ampeloprasum (Leek) was used as the host plant inoculated with R. irregulare. A total of 128 bacteria were isolated, of which 12 showed stable phosphate solubilizing activity. Finally, three bacteria belonging to the genus Pseudomonas showed the potential for inorganic and organic phosphate mobilization along with other plant growth promoting traits. These PSBs were further evaluated for their functional characteristics and their interaction with AMF. The impact of single or co-inoculations of the selected bacteria and AMF on Solanum lycopersicum was tested and we found that plants inoculated with the combination of fungus and bacteria had significantly higher plant biomass compared to single inoculations, indicating synergistic activities of the bacterial-fungal consortium.


Assuntos
Bactérias/metabolismo , Biomassa , Glomeromycota/crescimento & desenvolvimento , Glomeromycota/fisiologia , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Fosfatos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Bactérias/genética , Glomeromycota/genética , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/microbiologia , Micorrizas/metabolismo , Organofosfatos/metabolismo , Ácidos Fosforosos , Fósforo/metabolismo , Desenvolvimento Vegetal , RNA Ribossômico 16S , Microbiologia do Solo
18.
Mol Plant Microbe Interact ; 33(2): 349-363, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31609645

RESUMO

Endophytes live inside plants and are often beneficial. Kosakonia is a novel bacterial genus that includes many diazotrophic plant-associated isolates. Plant-bacteria studies on two rice endophytic Kosakonia beneficial strains were performed, including comparative genomics, secretome profiling, in planta tests, and a field release trial. The strains are efficient rhizoplane and root endosphere colonizers and localized in the root cortex. Secretomics revealed 144 putative secreted proteins, including type VI secretory system (T6SS) proteins. A Kosakonia T6SS genomic knock-out mutant showed a significant decrease in rhizoplane and endosphere colonization ability. A field trial using rice seed inoculated with Kosakonia spp. showed no effect on plant growth promotion upon nitrogen stress and microbiome studies revealed that Kosakonia spp. were significantly more present in the inoculated rice. Comparative genomics indicated that several protein domains were enriched in plant-associated Kosakonia spp. This study highlights that Kosakonia is an important, recently classified genus involved in plant-bacteria interaction.


Assuntos
Endófitos , Enterobacteriaceae , Microbiota , Oryza , Sistemas de Secreção Tipo VI , Endófitos/fisiologia , Enterobacteriaceae/fisiologia , Genômica , Interações Hospedeiro-Patógeno/fisiologia , Oryza/microbiologia , Raízes de Plantas , Sementes/microbiologia , Sistemas de Secreção Tipo VI/metabolismo
19.
Front Microbiol ; 10: 1409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293547

RESUMO

Plants develop in a microbe-rich environment and must interact with a plethora of microorganisms, both pathogenic and beneficial. Indeed, such is the case of Pseudomonas, and its model organisms P. fluorescens and P. syringae, a bacterial genus that has received particular attention because of its beneficial effect on plants and its pathogenic strains. The present study aims to compare plant-beneficial and pathogenic strains belonging to the P. syringae species to get new insights into the distinction between the two types of plant-microbe interactions. In assays carried out under greenhouse conditions, P. syringae pv. syringae strain 260-02 was shown to promote plant-growth and to exert biocontrol of P. syringae pv. tomato strain DC3000, against the Botrytis cinerea fungus and the Cymbidium Ringspot Virus. This P. syringae strain also had a distinct volatile emission profile, as well as a different plant-colonization pattern, visualized by confocal microscopy and gfp labeled strains, compared to strain DC3000. Despite the different behavior, the P. syringae strain 260-02 showed great similarity to pathogenic strains at a genomic level. However, genome analyses highlighted a few differences that form the basis for the following hypotheses regarding strain 260-02. P. syringae strain 260-02: (i) possesses non-functional virulence genes, like the mangotoxin-producing operon Mbo; (ii) has different regulation pathways, suggested by the difference in the autoinducer system and the lack of a virulence activator gene; (iii) has genes encoding DNA methylases different from those found in other P. syringae strains, suggested by the presence of horizontal-gene-transfer-obtained methylases that could affect gene expression.

20.
J Adv Res ; 19: 29-37, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31341667

RESUMO

Plants have evolved with a plethora of microorganisms having important roles for plant growth and health. A considerable amount of information is now available on the structure and dynamics of plant microbiota as well as on the functional capacities of isolated community members. Due to the interesting functional potential of plant microbiota as well as due to current challenges in crop production there is an urgent need to bring microbial innovations into practice. Different approaches for microbiome improvement exist. On the one hand microbial strains or strain combinations can be applied, however, field success is often variable and improvement is urgently required. Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. On the other hand, farming practices or the plant genotype can influence plant microbiota and thus functioning. Therefore, selection of appropriate farming practices and plant breeding leading to improved plant-microbiome interactions are avenues to increase the benefit of plant microbiota. In conclusion, different avenues making use of a new generation of inoculants as well as the application of microbiome-based agro-management practices and improved plant lines could lead to a better use of the plant microbiome. This paper reviews the importance and functionalities of the bacterial plant microbiome and discusses challenges and concepts in regard to the application of plant-associated bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA