RESUMO
Vegetable tannins are environmentally friendly tanning agents. However, they generally impart a dark colour to the tanned leather and highly contribute to the organic load in wastewaters. In this study, we employed a purification protocol separately on chestnut tannin (CT) and sulfited quebracho tannin (QT) to obtain the purified fractions (PCT and PQT). These samples were characterised by GPC, 1H NMR, 13C NMR, FT-IR, and HPLC-DAD techniques and applied for tanning tests. Through the purification process, non-tannin components and smaller molecules such as gallic acid, glucopyranose, and catechin were effectively removed from CT and QT, which consequently led to the reduced moisture content, pH value, and lighter colour of purified fractions. The crust leathers processed with PCT and PQT showed desirable light shades. Moreover, the organic loads in PCT and PQT tanning wastewater were reduced by 13.5% and 19.1%, respectively, when compared to those in traditional CT and QT tanning wastewater. Additionally, the physical and mechanical characteristics of crust leathers processed with PCT and PQT were comparable to those processed with CT and QT. Thus, purification of vegetable tannins may serve as a feasible strategy for producing light-colored vegetable-tanned leather while minimizing organic pollutant discharge during the vegetable tanning process. Supplementary Information: The online version contains supplementary material available at 10.1186/s42825-024-00171-9.
RESUMO
Leather is produced by a multi-step process among which the tanning phase is the most relevant, transforming animal skin collagen into a stable, non-putrescible material used to produce a variety of different goods, for the footwear, automotive, garments, and sports industry. Most of the leather produced today is tanned with chromium (III) salts or alternatively with aldehydes or synthetic tannins, generating high environmental concern. Over the years, high exhaustion tanning systems have been developed to reduce the environmental impact of chromium salts, which nevertheless do not avoid the use of metals. Chrome-free alternatives such as aldehydes and phenol based synthetic tannins, are suffering from Reach restrictions due to their toxicity. Thus, the need for environmentally benign and economically sustainable tanning agents is increasingly urgent. In this review, the synthesis, use and tanning mechanism of a new class of tanning agents, 1,3,5-triazines derivatives, have been reported together with organoleptic, physical mechanical characteristics of tanned leather produced. Additionally environmental performance and economic data available for 1,3,5-triazines have been compared with those of a standard basic chromium sulphate tanning process, evidencing the high potentiality for sustainable, metal, aldehyde, and phenol free leather manufacturing.
Assuntos
Curtume , Taninos , Animais , Aldeídos , Cromo/toxicidade , Cromo/análise , Resíduos Industriais/análise , Indústrias , Fenol , Fenóis , Sais , Triazinas/análise , Triazinas/químicaRESUMO
Nowadays, the need to reduce plastic waste and scantly biodegradable fossil-based products is of great importance. The use of leather as an alternative to synthetic materials is gaining renewed interest, but it is fundamental that any alternative to plastic-based materials should not generate an additional environmental burden. In the present work, a simple protocol for collagen stabilization mediated by 2-chloro-4,6-diethoxy-1,3,5-triazine (CDET) and a tert-amine has been described. Different tert-amines were tested in combination with CDET in a standard amidation reaction between 2-phenylethylamine and benzoic acid. Best performing condensation systems have been further tested for the cross-linking of both collagen powder and calf hides. The best results were achieved with CDET/NMM giving high-quality leather with improved environmental performances.
RESUMO
Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: Cl- or ClO4-). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption. The efficiency of CDMT/tert-amine was further compared to more stable triazine quaternary ammonium salts having a perchlorate counter anion (DMT-Ams(ClO4)). Overall CDMT/tert-amine systems appear to be a viable and more economical alternative to most dehydro-condensation agents employed today.
Assuntos
Amidas/síntese química , Ácidos Carboxílicos/química , Triazinas/química , Aminas/química , Benzamidas/síntese química , Técnicas de Química Sintética/métodos , Percloratos/química , Fenetilaminas/síntese química , Piperazinas/química , Compostos de Amônio Quaternário/química , Solventes/químicaRESUMO
First example of the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) as cross-linking agent for the development of carboxymethyl cellulose (CMC) films for food packaging is reported. Influence of different wt % of DMTMM and glycerol on the physical-mechanical properties of CMC films was investigated. The presence of DMTMM effectively improved moisture uptake, moisture content, water vapour permeability, water solubility of the films, oil resistance together with good biodegradability. Best compromise between high water resistance, vapour permeability and mechanical properties was accomplished with 5 wt % DMTMM and 50 wt % glycerol giving tensile strength and elongation at break of 52.25 ± 4.33 and 37.32 ± 2.04 respectively. DSC, TGA and SEM analysis further confirmed CMC cross-linking by DMTMM. All films prepared showed low opacity and high transparencies. Therefore, data reported show that DMTMM can efficiently cross-link CMC to produce films for food packaging.
RESUMO
The work reports the use of polyamidoamine dendrimers (PAMAM) and a cross-linking agent, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) or 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM), for the thermal stabilization of dermal bovine collagen. The efficiency of EDC/NHS/PAMAM and DMTMM/PAMAM in the cross-linking of collagen is correlated to the increase of the collagen shrinkage temperature (Ts), measured by differential scanning calorimetry (DSC). An alternative enzymatic protocol was adopted to measure the degradability of EDC/NHS/PAMAM tanned hides; these data are correlated to the thermal stability values measured by DSC. In the presence of PAMAMs, EDC/NHS provides very high stabilization of bovine dermal collagen, giving Ts of up to 95 °C, while DMTMM achieves lower stabilization. Preliminary tanning tests carried out in best reaction conditions show that EDC/NHS/PAMAM could be an interesting, environmentally-sustainable tanning system which is completely free of metals, formaldehyde, and phenols. Two new unreported dendrimeric species were synthesized and employed.