Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Transl Autoimmun ; 7: 100210, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37711153

RESUMO

Immune cell infiltration and glandular dysfunction are the hallmarks of autoimmune diseases such as primary Sjogren's syndrome (pSS), however, the mechanism(s) is unknown. Our data show that metformin-treatment induces Ca2+ signaling that restores saliva secretion and prevents immune cell infiltration in the salivary glands of IL14α-transgenic mice (IL14α), which is a model for pSS. Mechanistically, we show that loss of Ca2+ signaling is a major contributing factor, which is restored by metformin treatment, in IL14α mice. Furthermore, the loss of Ca2+ signaling leads to ER stress in salivary glands. Finally, restoration of metformin-induced Ca2+ signaling inhibited the release of alarmins and prevented the activation of ER stress that was essential for immune cell infiltration. These results suggest that loss of metformin-mediated activation of Ca2+ signaling prevents ER stress, which inhibited the release of alarmins that induces immune cell infiltration leading to salivary gland dysfunction observed in pSS.

2.
Clin Transl Med ; 13(4): e1228, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37006181

RESUMO

BACKGROUND: Primary Sjogren's syndrome (pSS) is a systemic autoimmune disease that is embodied by the loss of salivary gland function and immune cell infiltration, but the mechanism(s) are still unknown. The aim of this study was to understand the mechanisms and identify key factors that leads to the development and progression of pSS. METHODS: Immunohistochemistry staining, FACS analysis and cytokine levels were used to detect immune cells infiltration and activation in salivary glands. RNA sequencing was performed to identify the molecular mechanisms involved in the development of pSS. The function assays include in vivo saliva collection along with calcium imaging and electrophysiology on isolated salivary gland cells in mice models of pSS. Western blotting, real-time PCR, alarmin release, and immunohistochemistry was performed to identify the channels involved in salivary function in pSS. RESULTS: We provide evidence that loss of Ca2+ signaling precedes a decrease in saliva secretion and/or immune cell infiltration in IL14α, a mouse model for pSS. We also showed that Ca2+ homeostasis was mediated by transient receptor potential canonical-1 (TRPC1) channels and inhibition of TRPC1, resulting in the loss of salivary acinar cells, which promoted alarmin release essential for immune cell infiltration/release of pro-inflammatory cytokines. In addition, both IL14α and samples from human pSS patients showed a decrease in TRPC1 expression and increased acinar cell death. Finally, paquinimod treatment in IL14α restored Ca2+ homeostasis that inhibited alarmin release thereby reverting the pSS phenotype. CONCLUSIONS: These results indicate that loss of Ca2+ signaling is one of the initial factors, which induces loss of salivary gland function along with immune infiltration that exaggerates pSS. Importantly, restoration of Ca2+ signaling upon paquinimod treatment reversed the pSS phenotype thereby inhibiting the progressive development of pSS.


Assuntos
Síndrome de Sjogren , Humanos , Animais , Camundongos , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/diagnóstico , Alarminas/análise , Alarminas/metabolismo , Glândulas Salivares/metabolismo , Saliva/química , Saliva/metabolismo , Fenótipo
3.
Front Physiol ; 13: 969000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187775

RESUMO

Oral cancer patients have a poor prognosis, with approximately 66% of patients surviving 5-years after diagnosis. Treatments for oral cancer are limited and have many adverse side effects; thus, further studies are needed to develop drugs that are more efficacious. To achieve this objective, we developed CIDD-99, which produces cytotoxic effects in multiple oral squamous cell carcinoma (OSCC) cell lines. While we demonstrated that CIDD-99 induces ER stress and apoptosis in OSCC, the mechanism was unclear. Investigation of the Bcl-family of proteins showed that OSCC cells treated with CIDD-99 undergo downregulation of Bcl-XL and Bcl-2 anti-apoptotic proteins and upregulation of Bax (pro-apoptotic). Importantly, OSCC cells treated with CIDD-99 displayed decreased calcium signaling in a dose and time-dependent manner, suggesting that blockage of calcium signaling is the key mechanism that induces cell death in OSCC. Indeed, CIDD-99 anti-proliferative effects were reversed by the addition of exogenous calcium. Moreover, electrophysiological properties further established that calcium entry was via the non-selective TRPC1 channel and prolonged CIDD-99 incubation inhibited STIM1 expression. CIDD-99 inhibition of calcium signaling also led to ER stress and inhibited mitochondrial complexes II and V in vitro. Taken together, these findings suggest that inhibition of TRPC mediates induction of ER stress and mitochondrial dysfunction as a part of the cellular response to CIDD-99 in OSCC.

5.
iScience ; 24(11): 103339, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34816101

RESUMO

Transformation of naive macrophages into classically (M1) or alternatively (M2) activated macrophages regulates the inflammatory response. Here, we identified that distinct Ca2+ entry channels determine the IFNγ-induced M1 or IL-4-induced M2 transition. Naive or M2 macrophages exhibit a robust Ca2+ entry that was dependent on Orai1 channels, whereas the M1 phenotype showed a non-selective TRPC1 current. Blockade of Ca2+ entry suppresses pNF-κB/pJNK/STAT1 or STAT6 signaling events and consequently lowers cytokine production that is essential for M1 or M2 functions. Of importance, LPS stimulation shifted M2 cells from Orai1 toward TRPC1-mediated Ca2+ entry and TRPC1-/- mice exhibited transcriptional changes that suppress pro-inflammatory cytokines. In contrast, Orai1-/- macrophages showed a decrease in anti-inflammatory cytokines and exhibited a suppression of mitochondrial oxygen consumption rate and inhibited mitochondrial shape transition specifically in the M2 cells. Finally, alterations in TRPC1 or Orai1 expression determine macrophage polarization suggesting a distinct role of Ca2+ channels in modulating macrophage transformation.

6.
NPJ Regen Med ; 6(1): 67, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671058

RESUMO

Stem cells have indefinite self-renewable capability; however, factors that modulate their pluripotency/function are not fully identified. Here we show that store-dependent Ca2+ entry is essential for modulating the function of bone marrow-derived mesenchymal stem cells (MSCs). Increasing external Ca2+ modulated cell cycle progression that was critical for MSCs survival. Additionally, Ca2+ was critical for stem proliferation, its differentiation, and maintaining stem cell potential. Ca2+ channel characterization, including gene silencing, showed two distinct Ca2+ entry channels (through Orai1/TRPC1 or via Orai3) that differentially regulate the proliferation and viability of MSCs. Importantly, NFκB translocation, but not JNK/ERK into the nucleus, was observed upon store depletion, which was blocked by the addition of Ca2+ channel inhibitors. Radiation lead to a decrease in saliva secretion, decrease in acinar cell number, and enlarged ducts were observed, which were restored by the transplantation of stem cells that were propagated in higher Ca2+. Finally radiation showed a decrese in TRPC1 expression along with a decrese in AQP5, which was again restored upon MSC tranplantation. Together these results suggest that Ca2+ entry is essential for stem cell function that could be critical for regenerative medicine.

7.
Cells ; 10(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34440894

RESUMO

Calcium (Ca2+) functions as a second messenger that is critical in regulating fundamental physiological functions such as cell growth/development, cell survival, neuronal development and/or the maintenance of cellular functions. The coordination among various proteins/pumps/Ca2+ channels and Ca2+ storage in various organelles is critical in maintaining cytosolic Ca2+ levels that provide the spatial resolution needed for cellular homeostasis. An important regulatory aspect of Ca2+ homeostasis is a store operated Ca2+ entry (SOCE) mechanism that is activated by the depletion of Ca2+ from internal ER stores and has gained much attention for influencing functions in both excitable and non-excitable cells. Ca2+ has been shown to regulate opposing functions such as autophagy, that promote cell survival; on the other hand, Ca2+ also regulates programmed cell death processes such as apoptosis. The functional significance of the TRP/Orai channels has been elaborately studied; however, information on how they can modulate opposing functions and modulate function in excitable and non-excitable cells is limited. Importantly, perturbations in SOCE have been implicated in a spectrum of pathological neurodegenerative conditions. The critical role of autophagy machinery in the pathogenesis of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases, would presumably unveil avenues for plausible therapeutic interventions for these diseases. We thus review the role of SOCE-regulated Ca2+ signaling in modulating these diverse functions in stem cell, immune regulation and neuromodulation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Animais , Autofagia/fisiologia , Sinalização do Cálcio/fisiologia , Humanos , Células-Tronco/metabolismo
8.
Rev. bras. med. esporte ; 27(2): 134-137, Apr.-June 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1280057

RESUMO

ABSTRACT Introduction: The use of substances to enhance sports performance among professional and amateur athletes is increasing. Such substances may either be included in the group of dietary supplements or fall into pharmacological classes. Every substance used for this purpose is called an ergogenic agent. The number of ergogenic options available increases every day, favoring overuse and use without proper guidance. Among the dietary supplements, we highlight the use of creatine, a substance widespread in sports. Among the pharmacological groups, many drugs are used. Recently the use of sildenafil citrate by professional athletes from various predominantly aerobic sports modalities was reported in the media. Objective: To compare and demonstrate the responses caused by physical training associated with the use of creatine and sildenafil citrate in mice. Methods: A swim training protocol was applied and then an electrophysiograph was used in order to obtain parameters related to contraction intensity, the area under the curve and the percentage drop. Results: The responses obtained demonstrated the ergogenic action of creatine because it altered the parameters used for measurement. The use of sildenafil citrate did not yield satisfactory results to frame the drug as an ergogenic agent. Conclusion: Creatine has an ergogenic effect, reducing the percentage drop after 10 seconds, while sildenafil demonstrated no ergogenic potential and, interestingly, resulted in weaker responses when compared to the exercise groups. Evidence level II; Comparative prospective study .


RESUMEN Introducción: El uso de sustancias con el objetivo de aumentar el rendimiento deportivo entre atletas profesionales y amateurs es creciente. Tales sustancias pueden formar parte del grupo de suplementos alimentarios o integrar clases farmacológicas. Toda sustancia empleada para ese fin es denominada agente ergogénico. El número de opciones entre los agentes ergogénicos aumenta cada día, favoreciendo así su uso excesivo y sin la debida orientación. Entre los suplementos alimentarios, se destaca el uso de creatina, sustancia muy difundida en el medio deportivo. Ya entre los grupos farmacológicos, muchas sustancias son usadas. Recientemente, fue divulgado entre los medios de comunicación el uso de citrato de sildenafil por atletas profesionales, de varias modalidades deportivas, predominantemente las aeróbicas. Objetivos: Comparar y demostrar las respuestas ocasionadas por el entrenamiento físico, asociadas al uso de creatina y citrato de sildenafil en ratones. Métodos: Se aplicó un protocolo de entrenamiento de natación y, a continuación, se usó un electrofisiógrafo con el objetivo de obtener parámetros referentes a la intensidad de contracción, al área bajo la curva y a la caída porcentual. Resultados: Las respuestas obtenidas demuestran acción ergogénica de la creatina, visto que alteraron los parámetros empleados para la medición. Ya el uso de citrato de sildenafil no presentó resultados satisfactorios para encuadrar al fármaco como agente ergogénico. Conclusión: La creatina presenta efecto ergogénico porque reduce la caída porcentual después de 10 segundos, mientras que el sildenafil no presentó potencial ergogénico y, curiosamente, demostró respuestas inferiores cuando comparado a los grupos de ejercicio. Nivel de evidencia II; Estudio prospectivo comparativo .


RESUMO Introdução: O uso de substâncias com o objetivo de aumentar o rendimento esportivo entre atletas profissionais e amadores é crescente. Tais substâncias podem fazer parte do grupo de suplementos alimentares ou integrar classes farmacológicas. Toda substância empregada para esse fim é denominada de agente ergogênico. O número de opções entre os agentes ergogênicos aumenta a cada dia, favorecendo assim o uso em demasia e sem a devida orientação. Entre os suplementos alimentares, salientamos a utilização de creatina, substância muito difundida no meio esportivo. Já entre os grupos farmacológicos, muitas substâncias são utilizadas. Recentemente, foi divulgado entre os meios de comunicação o uso de citrato de sildenafila por atletas profissionais de várias modalidades esportivas, predominantemente as aeróbicas. Objetivos: Comparar e demonstrar as repostas ocasionadas pelo treinamento físico, associadas ao uso de creatina e citrato de sildenafila em camundongos. Métodos: Aplicou-se um protocolo de treinamento de natação e, a seguir, empregou-se um eletrofisiógrafo com objetivo de obter parâmetros referentes à intensidade de contração, à área sob a curva e à queda percentual. Resultados: As respostas obtidas demonstram ação ergogênica da creatina, visto que alteraram os parâmetros empregados para a mensuração. Já a utilização de citrato de sildenafila não apresentou resultados satisfatórios para enquadrar o fármaco como agente ergogênico. Conclusão: A creatina apresenta efeito ergogênico porque reduz a queda percentual após 10 segundos, já a sildenafila não apresentou potencial ergogênico e, curiosamente, demonstrou respostas inferiores quando comparado aos grupos de exercício. Nível de evidência II; Estudo prospectivo comparativo .


Assuntos
Animais , Masculino , Camundongos , Natação , Vasodilatadores/farmacologia , Fadiga Muscular/efeitos dos fármacos , Creatina/farmacologia , Citrato de Sildenafila/farmacologia , Desempenho Físico Funcional , Nervo Isquiático/cirurgia , Tendões/cirurgia , Modelos Animais , Eletrofisiologia/instrumentação
9.
J Cell Sci ; 133(5)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31722977

RESUMO

Activation of cellular stresses is associated with inflammation; however, the mechanisms are not well identified. Here, we provide evidence that loss of Ca2+ influx induces endoplasmic reticulum (ER) stress in primary macrophages and in murine macrophage cell line Raw 264.7, in which the unfolded protein response is initiated to modulate cytokine production, thereby activating the immune response. Stressors that initiate the ER stress response block store-dependent Ca2+ entry in macrophages prior to the activation of the unfolded protein response. The endogenous Ca2+ entry channel is dependent on the Orai1-TRPC1-STIM1 complex, and the presence of ER stressors decreased expression of TRPC1, Orai1 and STIM1. Additionally, blocking Ca2+ entry with SKF96365 also induced ER stress, promoted cytokine production, activation of autophagy, increased caspase activation and induced apoptosis. Furthermore, ER stress inducers inhibited cell cycle progression, promoted the inflammatory M1 phenotype, and increased phagocytosis. Mechanistically, restoration of Orai1-STIM1 expression inhibited the ER stress-mediated loss of Ca2+ entry that prevents ER stress and inhibits cytokine production, and thus induced cell survival. These results suggest an unequivocal role of Ca2+ entry in modulating ER stress and in the induction of inflammation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Macrófagos/imunologia , Canais de Cátion TRPC/fisiologia , Animais , Membrana Celular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína ORAI1/genética , Proteína ORAI1/fisiologia , Células RAW 264.7 , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/fisiologia , Canais de Cátion TRPC/genética
10.
FASEB Bioadv ; 1(1): 40-50, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31111119

RESUMO

Disturbances in endoplasmic reticulum (ER) Ca2+ homeostasis have been associated with many diseases including loss of salivary glands. Although significant progress has been accomplished which led to the increase in our understanding of the cellular responses to ER stress, the factors/ion channels that could inhibit ER stress are not yet identified. Here we show that TRPC1 (transient receptor potential canonical 1) is involved in regulating Ca2+ homeostasis and loss of TRPC1 decreased ER Ca2+ levels, inhibited the unfolded protein response (UPR), that induced loss of salivary gland cells. We provide further evidence that ER stress inducing agents (Tunicamycin and Brefeldin A) disrupts Ca2+ homeostasis by directly inhibiting TRPC1-mediated Ca2+ entry, which led to ER stress in salivary gland cells. Moreover, induction of ER stress lead to an increase in CHOP expression, which decreased TRPC1 expression and subsequently attenuated autophagy along with increased apoptosis. Importantly, TRPC1-/- mice showed increased ER stress, increased immune cell infiltration, loss of Ca2+ homeostasis, decreased saliva secretion, and decreased salivary gland survival. Finally, restoration of TRPC1 not only maintained Ca2+ homeostasis, but inhibited ER stress that induced cell survival. Overall these results suggest a significant role of TRPC1 Ca2+ channels in ER stress and homeostatic function/survival of salivary gland cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA