Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357515

RESUMO

Maritime Antarctica's harsh abiotic conditions forged simple terrestrial ecosystems, mostly constituted of bryophytes, lichens, and vascular plants. Though biotic interactions are, together with abiotic factors, thought to help shape this ecosystem, influencing species' distribution and, indirectly, mediating their response to climate, the importance of these interactions is still fairly unknown. We modeled current and future abundance patterns of bryophytes, lichens, and vascular plants, accounting for biotic interactions and abiotic drivers, along a climatic gradient in maritime Antarctica. The influence of regional climate and other drivers was modeled using structural equation models, with and without biotic interactions. Models with biotic interactions performed better; the one offering higher ecological support was used to estimate current and future spatial distributions of vegetation. Results suggest that plants are confined to lower elevations, negatively impacting bryophytes and lichens, whereas at higher elevations both climate and other drivers influence bryophytes and lichens. Our findings strongly support the use of biotic interactions to predict the spatial distribution of Antarctic vegetation.

2.
Ecol Appl ; 32(5): e2599, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343001

RESUMO

Biocrusts are major contributors to dryland diversity, functioning, and services. However, little is known about how habitat degradation will impact multiple facets of biocrust diversity and measurable functional traits. We evaluated changes in taxonomic, functional, and phylogenetic diversity of biocrust-forming lichens along a habitat degradation gradient related to the presence of linear infrastructure (i.e., a road) and a profound agricultural driven transformation. To do so, we selected 50 remnants of a Mediterranean shrubland. We considered several surrogates of habitat quality and causal disturbance on the various diversity facets of biocrusts by using structural equation modeling, hypothesizing that habitat degradation primarily affects functional diversity, which in turn regulates changes in taxonomic and phylogenetic diversities, and also that taxonomic and phylogenetic diversities are coupled. Fragment connectivity, distance to linear infrastructure (i.e., a road) and, particularly, soil fertility (i.e., soil P concentration), had mostly negative effects on biocrust functional diversity, which in turn affected both taxonomic and phylogenetic diversities. However, we found no direct effects of habitat degradation variables on the taxonomic and phylogenetic diversities. We also found that increases in phylogenetic diversity had a positive effect on taxonomic diversity along the habitat degradation gradient. Our results indicate that functional diversity of biocrusts is strongly affected by habitat degradation, which may profoundly alter their contribution to ecosystem functioning and services. Furthermore, functional diversity regulates the response of biocrust taxonomic and phylogenetic diversity to habitat degradation. These findings indicate that habitat degradation alters and simplifies the diversity of functional traits of biocrust-forming lichens, leading to biodiversity loss, with important consequences for the conservation of global drylands biodiversity.


Assuntos
Ecossistema , Líquens , Filogenia , Solo/química , Microbiologia do Solo
3.
New Phytol ; 231(2): 540-558, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864276

RESUMO

Despite their extent and socio-ecological importance, a comprehensive biogeographical synthesis of drylands is lacking. Here we synthesize the biogeography of key organisms (vascular and nonvascular vegetation and soil microorganisms), attributes (functional traits, spatial patterns, plant-plant and plant-soil interactions) and processes (productivity and land cover) across global drylands. These areas have a long evolutionary history, are centers of diversification for many plant lineages and include important plant diversity hotspots. This diversity captures a strikingly high portion of the variation in leaf functional diversity observed globally. Part of this functional diversity is associated with the large variation in response and effect traits in the shrubs encroaching dryland grasslands. Aridity and its interplay with the traits of interacting plant species largely shape biogeographical patterns in plant-plant and plant-soil interactions, and in plant spatial patterns. Aridity also drives the composition of biocrust communities and vegetation productivity, which shows large geographical variation. We finish our review by discussing major research gaps, which include: studying regular vegetation spatial patterns; establishing large-scale plant and biocrust field surveys assessing individual-level trait measurements; knowing whether the impacts of plant-plant and plant-soil interactions on biodiversity are predictable; and assessing how elevated CO2 modulates future aridity conditions and plant productivity.


Assuntos
Biodiversidade , Ecossistema , Geografia , Plantas , Solo
4.
New Phytol ; 230(1): 101-115, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314177

RESUMO

Biocrusts are key drivers of ecosystem functioning in drylands, yet our understanding of how climate change will affect the chemistry of biocrust-forming species and their impacts on carbon (C) and nitrogen (N) cycling is still very limited. Using a manipulative experiment conducted with common biocrust-forming lichens with distinct morphology and chemistry (Buellia zoharyi, Diploschistes diacapsis, Psora decipiens and Squamarina lentigera), we evaluated changes in lichen total and isotopic C and N and several soil C and N variables after 50 months of simulated warming and rainfall reduction. Climate change treatments reduced δ13 C and the C : N ratio in B. zoharyi, and increased δ15 N in S. lentigera. Lichens had species-specific effects on soil dissolved organic N (DON), NH4+ , ß-glucosidase and acid phosphatase activity regardless of climate change treatments, while these treatments changed how lichens affected several soil properties regardless of biocrust species. Changes in thallus δ13 C, N and C : N drove species-specific effects on dissolved organic nitrogen (DON), NH4+ , ß-glucosidase and acid phosphatase activity. Our findings indicate that warmer and drier conditions will alter the chemistry of biocrust-forming lichens, affecting soil nutrient cycling, and emphasize their key role as modulators of climate change impacts in dryland soils.


Assuntos
Briófitas , Líquens , Ascomicetos , Mudança Climática , Ecossistema , Solo , Microbiologia do Solo
6.
Environ Sci Pollut Res Int ; 24(34): 26172-26184, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29103122

RESUMO

Biocrusts are key drivers of the structure and functioning of drylands and are very sensitive to disturbance, including atmospheric nitrogen (N) deposition. We studied the impacts of simulated N deposition on biocrust community composition and soil photosynthetic and photoprotective pigment content after five years of N application in a European semiarid Mediterranean shrubland. The experiment consisted in six experimental blocks with four plots, each receiving 0, 10, 20, or 50 kg NH4NO3-N ha-1 year-1 + 6-7 kg N ha-1 year-1 background. After 5 years of N application, total lichen cover decreased up to 50% compared to control conditions and these changes were only clearly evident when evaluated from a temporal perspective (i.e. as the percentage of change from the first survey in 2008 to the last survey in 2012). In contrast, moss cover did not change in response to N, suggesting that biocrust community alterations operate via species- and functional group-specific effects. Interestingly, between-year variations in biocrust cover tracked variations in autumnal precipitation, showing that these communities are more dynamic than previously thought. Biocrust species alterations in response to N were, however, often secondary when compared to the role of ecologically relevant drivers such as soil pH and shrub cover, which greatly determined the composition and inter-annual dynamics of the biocrust community. Similarly, cyanobacterial abundance and soil pigment concentration were greatly determined by biotic and abiotic interactions, soil pH for pigments, and organic matter content and shrub cover for cyanobacteria. Biocrusts, and particularly the lichen component, are highly sensitive to N deposition and their responses to pollutant N can be best understood when evaluated from a temporal and multivariate perspective, including impacts mediated by interactions with biotic and abiotic drivers.


Assuntos
Briófitas/metabolismo , Líquens/metabolismo , Nitrogênio/química , Solo/química , Cianobactérias/metabolismo , Ecossistema , Nitrogênio/metabolismo , Pigmentação
7.
Environ Pollut ; 227: 194-206, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28460237

RESUMO

Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Mudança Climática , Ecossistema , Monitoramento Ambiental , Poluição do Ar/estatística & dados numéricos , Biodiversidade , Clima , Humanos , Nitrogênio/análise , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA