Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
mBio ; 14(5): e0174223, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37707056

RESUMO

IMPORTANCE: Our findings define a novel role for ZIKV-induced TTP expression in regulating IFNß/IFNλ production in primary hBMECs and Sertoli cells. These cells comprise key physiological barriers subverted by ZIKV to access brain and testicular compartments and serve as reservoirs for persistent replication and dissemination. We demonstrate for the first time that the ARE-binding protein TTP is virally induced and post-transcriptionally regulates IFNß/IFNλ secretion. In ZIKV-infected hBMEC and Sertoli cells, TTP knockout increased IFNß/IFNλ secretion, while TTP expression blocked IFNß/IFNλ secretion. The TTP-directed blockade of IFN secretion permits ZIKV spread and persistence in hBMECs and Sertoli cells and may similarly augment ZIKV spread across IFNλ-protected placental barriers. Our work highlights the importance of post-transcriptional ZIKV regulation of IFN expression and secretion in cells that regulate viral access to protected compartments and defines a novel mechanism of ZIKV-regulated IFN responses which may facilitate neurovirulence and sexual transmission.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Masculino , Feminino , Humanos , Células de Sertoli/metabolismo , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Tristetraprolina , Placenta/metabolismo , Replicação Viral
2.
mBio ; 14(4): e0138823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37489888

RESUMO

Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus. NS1 proteins are highly conserved glycoproteins that regulate replication, spread, and neurovirulence. POWV NS1 contains three putative N-linked glycosylation sites that we modified individually in infectious recLI9 mutants (N85Q, N208Q, and N224Q). NS1 glycosylation site mutations reduced replication kinetics and were attenuated, with 1-2 log decreases in titer. Severely attenuated recLI9-N224Q exhibited a 2- to 3-day delay in focal cell-to-cell spread and reduced NS1 secretion but was lethal when intracranially inoculated into suckling mice. However, footpad inoculation of recLI9-N224Q resulted in the survival of 80% of mice and demonstrated that NS1-N224Q mutations reduce POWV neuroinvasion in vivo. To monitor NS1 trafficking, we CPER fused a split GFP11-tag to the NS1 C-terminus and generated an infectious reporter virus, recLI9-NS1-GFP11. Cells infected with recLI9-NS1-GFP11 revealed NS1 trafficking in live cells and the novel formation of large NS1-lined intracellular vesicles. An infectious recLI9-NS1-GFP11 reporter virus permits real-time analysis of NS1 functions in POWV replication, assembly, and secretion and provides a platform for evaluating antiviral compounds. Collectively, our robust POWV reverse genetics system permits analysis of viral spread and neurovirulence determinants in vitro and in vivo and enables the rational genetic design of live attenuated POWV vaccines. IMPORTANCE Our findings newly establish a mechanism for genetically modifying Powassan viruses (POWVs), systematically defining pathogenic determinants and rationally designing live attenuated POWV vaccines. This initial study demonstrates that mutating POWV NS1 glycosylation sites attenuates POWV spread and neurovirulence in vitro and in vivo. Our findings validate a robust circular polymerase extension reaction approach as a mechanism for developing, and evaluating, attenuated genetically modified POWVs. We further designed an infectious GFP-tagged reporter POWV that permits us to monitor secretory trafficking of POWV in live cells, which can be applied to screen potential POWV replication inhibitors. This robust system for modifying POWVs provides the ability to define attenuating POWV mutations and create genetically attenuated recPOWV vaccines.


Assuntos
Doenças Transmissíveis , Vírus da Encefalite Transmitidos por Carrapatos , Humanos , Glicosilação , Genética Reversa , Pele
3.
J Virol ; 96(1): e0168221, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643436

RESUMO

Powassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the northeastern United States, with a 2% prevalence in Long Island (LI) deer ticks (Ixodes scapularis). POWVs are transmitted within as little as 15 min of a tick bite and enter the central nervous system (CNS) to cause encephalitis (10% of cases are fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI Ixodes ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV-infected cells by immunoperoxidase staining. Inoculated POWV-LI9 and LI41 were exclusively present in infected cell foci, indicative of cell to cell spread, despite growth in liquid culture without an overlay. Cloning and sequencing establish POWV-LI9 as a phylogenetically distinct lineage II POWV strain circulating in LI deer ticks. Primary human brain microvascular endothelial cells (hBMECs) and pericytes form a neurovascular complex that restricts entry into the CNS. We found that POWV-LI9 and -LI41 and lineage I POWV-LB productively infect hBMECs and pericytes and that POWVs were basolaterally transmitted from hBMECs to lower-chamber pericytes without permeabilizing polarized hBMECs. Synchronous POWV-LI9 infection of hBMECs and pericytes induced proinflammatory chemokines, interferon-ß (IFN-ß) and proteins of the IFN-stimulated gene family (ISGs), with delayed IFN-ß secretion by infected pericytes. IFN inhibited POWV infection, but despite IFN secretion, a subset of POWV-infected hBMECs and pericytes remained persistently infected. These findings suggest a potential mechanism for POWVs (LI9/LI41 and LB) to infect hBMECs, spread basolaterally to pericytes, and enter the CNS. hBMEC and pericyte responses to POWV infection suggest a role for immunopathology in POWV neurovirulence and potential therapeutic targets for preventing POWV spread to neuronal compartments. IMPORTANCE We isolated POWVs from LI deer ticks (I. scapularis) directly in VeroE6 cells, and sequencing revealed POWV-LI9 as a distinct lineage II POWV strain. Remarkably, inoculation of VeroE6 cells with POWV-containing tick homogenates resulted in infected cell foci in liquid culture, consistent with cell-to-cell spread. POWV-LI9 and -LI41 and lineage I POWV-LB strains infected hBMECs and pericytes that comprise neurovascular complexes. POWVs were nonlytically transmitted basolaterally from infected hBMECs to lower-chamber pericytes, suggesting a mechanism for POWV transmission across the blood-brain barrier (BBB). POWV-LI9 elicited inflammatory responses from infected hBMEC and pericytes that may contribute to immune cell recruitment and neuropathogenesis. This study reveals a potential mechanism for POWVs to enter the CNS by infecting hBMECs and spreading basolaterally to abluminal pericytes. Our findings reveal that POWV-LI9 persists in cells that form a neurovascular complex spanning the BBB and suggest potential therapeutic targets for preventing POWV spread to neuronal compartments.


Assuntos
Vetores de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Ixodes/virologia , Animais , Células Cultivadas , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/transmissão , Células Endoteliais , Ordem dos Genes , Genoma Viral , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferons/farmacologia , Pericitos/virologia , Filogenia , Replicação Viral/efeitos dos fármacos
4.
mBio ; 12(4): e0196221, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399621

RESUMO

Zika virus (ZIKV) is a neurovirulent flavivirus that uniquely causes fetal microcephaly, is sexually transmitted, and persists in patients for up to 6 months. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier (BBB) and enables viral spread to neuronal compartments. We found that CCL5, a chemokine with prosurvival effects on immune cells, was highly secreted by ZIKV-infected hBMECs. Although roles for CCL5 in endothelial cell (EC) survival remain unknown, the presence of the CCL5 receptors CCR3 and CCR5 on ECs suggested that CCL5 could promote ZIKV persistence in hBMECs. We found that exogenous CCL5 induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in hBMECs and that ERK1/2 cell survival signaling was similarly activated by ZIKV infection. Neutralizing antibodies to CCL5, CCR3, or CCR5 inhibited persistent ZIKV infection of hBMECs. While knockout (KO) of CCL5 failed to prevent ZIKV infection of hBMECs, at 3 days postinfection (dpi), we observed a >90% reduction in ZIKV-infected CCL5-KO hBMECs and a multilog reduction in ZIKV titers. In contrast, the addition of CCL5 to CCL5-KO hBMECs dose-dependently rescued ZIKV persistence in hBMECs. Inhibiting CCL5 responses using CCR3 (UCB35625) and CCR5 (maraviroc) receptor antagonists reduced the number of ZIKV-infected hBMECs and ZIKV titers (50% inhibitory concentrations [IC50s] of 2.5 to 12 µM), without cytotoxicity (50% cytotoxic concentration [CC50] of >80 µM). These findings demonstrate that ZIKV-induced CCL5 directs autocrine CCR3/CCR5 activation of ERK1/2 survival responses that are required for ZIKV to persistently infect hBMECs. Our results establish roles for CCL5 in ZIKV persistence and suggest the potential for CCL5 receptor antagonists to therapeutically inhibit ZIKV spread and neurovirulence. IMPORTANCE Our findings demonstrate that CCL5 is required for ZIKV to persistently infect human brain ECs that normally protect neuronal compartments. We demonstrate that ZIKV-elicited CCL5 secretion directs autocrine hBMEC activation of ERK1/2 survival pathways via CCR3/CCR5, and inhibiting CCL5/CCR3/CCR5 responses prevented ZIKV persistence and spread. Our findings demonstrate that ZIKV-directed CCL5 secretion promotes hBMEC survival and reveals an underlying mechanism of ZIKV pathogenesis and spread. We demonstrate that antagonists of CCR3/CCR5 inhibit ZIKV persistence in hBMECs and provide potential therapeutic approaches for preventing ZIKV persistence, spread, and neurovirulence.


Assuntos
Encéfalo/virologia , Quimiocina CCL5/genética , Células Endoteliais/virologia , Zika virus/genética , Zika virus/fisiologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/virologia , Encéfalo/citologia , Células Cultivadas , Quimiocina CCL5/imunologia , Quimiocina CCL5/farmacologia , Células Endoteliais/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Receptores CCR3/metabolismo , Receptores CCR5/metabolismo , Zika virus/efeitos dos fármacos , Zika virus/imunologia
5.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34292314

RESUMO

Besides antigen-specific responses to viral antigens, humoral immune response in virus infection can generate polyreactive and autoreactive antibodies. Dengue and Zika virus infections have been linked to antibody-mediated autoimmune disorders, including Guillain-Barré syndrome. A unique feature of flaviviruses is the secretion of nonstructural protein 1 (NS1) by infected cells. NS1 is highly immunogenic, and antibodies targeting NS1 can have both protective and pathogenic roles. In the present study, we investigated the humoral immune response to Zika virus NS1 and found NS1 to be an immunodominant viral antigen associated with the presence of autoreactive antibodies. Through single B cell cultures, we coupled binding assays and BCR sequencing, confirming the immunodominance of NS1. We demonstrate the presence of self-reactive clones in germinal centers after both infection and immunization, some of which present cross-reactivity with NS1. Sequence analysis of anti-NS1 B cell clones showed sequence features associated with pathogenic autoreactive antibodies. Our findings demonstrate NS1 immunodominance at the cellular level as well as a potential role for NS1 in ZIKV-associated autoimmune manifestations.


Assuntos
Reações Cruzadas/imunologia , Proteínas não Estruturais Virais/imunologia , Infecção por Zika virus/imunologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Linfócitos B/virologia , Feminino , Centro Germinativo/patologia , Centro Germinativo/virologia , Imunização , Imunoglobulina M/sangue , Camundongos Endogâmicos BALB C , Proteínas não Estruturais Virais/sangue , Infecção por Zika virus/virologia
6.
J Virol ; 95(13): e0197420, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33827950

RESUMO

Dengue is a mosquito-borne infectious disease that is highly endemic in tropical and subtropical countries. Symptomatic patients can rapidly progress to severe conditions of hemorrhage, plasma extravasation, and hypovolemic shock, which leads to death. The blood tests of patients with severe dengue typically reveal low levels of high-density lipoprotein (HDL), which is responsible for reverse cholesterol transport (RCT) and regulation of the lipid composition in peripheral tissues. It is well known that dengue virus (DENV) depends on membrane cholesterol rafts to infect and to replicate in mammalian cells. Here, we describe the interaction of DENV nonstructural protein 1 (NS1) with apolipoprotein A1 (ApoA1), which is the major protein component of HDL. NS1 is secreted by infected cells and can be found circulating in the serum of patients with the onset of symptoms. NS1 concentrations in plasma are related to dengue severity, which is attributed to immune evasion and an acute inflammatory response. Our data show that the DENV NS1 protein induces an increase of lipid rafts in noninfected cell membranes and enhances further DENV infection. We also show that ApoA1-mediated lipid raft depletion inhibits DENV attachment to the cell surface. In addition, ApoA1 is able to neutralize NS1-induced cell activation and to prevent NS1-mediated enhancement of DENV infection. Furthermore, we demonstrate that the ApoA1 mimetic peptide 4F is also capable of mediating lipid raft depletion to control DENV infection. Taken together, our results suggest the potential of RCT-based therapies for dengue treatment. These results should motivate studies to assess the importance of RCT in DENV infection in vivo. IMPORTANCE DENV is one of the most relevant mosquito-transmitted viruses worldwide, infecting more than 390 million people every year and leading to more than 20 thousand deaths. Although a DENV vaccine has already been approved, its potential side effects have hampered its use in large-scale immunizations. Therefore, new treatment options are urgently needed to prevent disease worsening or to improve current clinical management of severe cases. In this study, we describe a new interaction of the NS1 protein, one of the major viral components, with a key component of HDL, ApoA1. This interaction seems to alter membrane susceptibility to virus infection and modulates the mechanisms triggered by DENV to evade the immune response. We also propose the use of a mimetic peptide named 4F, which was originally developed for atherosclerosis, as a potential therapy for relieving DENV symptoms.


Assuntos
Apolipoproteína A-I/imunologia , Vírus da Dengue/metabolismo , Evasão da Resposta Imune/imunologia , Microdomínios da Membrana/metabolismo , Proteínas não Estruturais Virais/imunologia , Animais , Antivirais/farmacologia , Linhagem Celular , Colesterol/metabolismo , Dengue/patologia , Humanos , Inflamação/prevenção & controle , Camundongos , Peptídeos/farmacologia , Células RAW 264.7 , Ligação Viral/efeitos dos fármacos
7.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699085

RESUMO

Zika virus (ZIKV) is cytopathic to neurons and persistently infects brain microvascular endothelial cells (hBMECs), which normally restrict viral access to neurons. Despite replicating in the cytoplasm, ZIKV and Dengue virus (DENV) polymerases, NS5 proteins, are predominantly trafficked to the nucleus. We found that a SUMO interaction motif in ZIKV and DENV NS5 proteins directs nuclear localization. However, ZIKV NS5 formed discrete punctate nuclear bodies (NBs), while DENV NS5 was uniformly dispersed in the nucleoplasm. Yet, mutating one DENV NS5 SUMO site (K546R) localized the NS5 mutant to discrete NBs, and NBs formed by the ZIKV NS5 SUMO mutant (K252R) were restructured into discrete protein complexes. In hBMECs, NBs formed by STAT2 and promyelocytic leukemia (PML) protein are present constitutively and enhance innate immunity. During ZIKV infection or NS5 expression, we found that ZIKV NS5 evicts PML from STAT2 NBs, forming NS5/STAT2 NBs that dramatically reduce PML expression in hBMECs and inhibit the transcription of interferon-stimulated genes (ISG). Expressing the ZIKV NS5 SUMO site mutant (K252R) resulted in NS5/STAT2/PML NBs that failed to degrade PML, reduce STAT2 expression, or inhibit ISG induction. Additionally, the K252 SUMOylation site and NS5 nuclear localization were required for ZIKV NS5 to regulate hBMEC cell cycle transcriptional responses. Our data reveal NS5 SUMO motifs as novel NB coordinating factors that distinguish flavivirus NS5 proteins. These findings establish SUMOylation of ZIKV NS5 as critical in the regulation of antiviral ISG and cell cycle responses that permit ZIKV to persistently infect hBMECs.IMPORTANCE ZIKV is a unique neurovirulent flavivirus that persistently infects human brain microvascular endothelial cells (hBMECs), the primary barrier that restricts viral access to neuronal compartments. Here, we demonstrate that flavivirus-specific SIM and SUMO sites determine the assembly of NS5 proteins into discrete nuclear bodies (NBs). We found that NS5 SIM sites are required for NS5 nuclear localization and that SUMO sites regulate NS5 NB complex constituents, assembly, and function. We reveal that ZIKV NS5 SUMO sites direct NS5 binding to STAT2, disrupt the formation of antiviral PML-STAT2 NBs, and direct PML degradation. ZIKV NS5 SUMO sites also transcriptionally regulate cell cycle and ISG responses that permit ZIKV to persistently infect hBMECs. Our findings demonstrate the function of SUMO sites in ZIKV NS5 NB formation and their importance in regulating nuclear responses that permit ZIKV to persistently infect hBMECs and thereby gain access to neurons.


Assuntos
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Células Endoteliais/metabolismo , Sumoilação/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo , Células A549 , Antivirais/farmacologia , Sítios de Ligação , Encéfalo/virologia , Ciclo Celular , Células Endoteliais/virologia , Exorribonucleases/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Imunidade Inata/efeitos dos fármacos , Modelos Moleculares , Mutação , Proteína da Leucemia Promielocítica/metabolismo , Fator de Transcrição STAT2/metabolismo , Alinhamento de Sequência , Sumoilação/efeitos dos fármacos , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/metabolismo
8.
Sci Rep ; 9(1): 2651, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804377

RESUMO

Dengue is an important mosquito-borne disease and a global public health problem. The disease is caused by dengue virus (DENV), which is a member of the Flaviviridae family and contains a positive single-stranded RNA genome that encodes a single precursor polyprotein that is further cleaved into structural and non-structural proteins. Among these proteins, the non-structural 3 (NS3) protein is very important because it forms a non-covalent complex with the NS2B cofactor, thereby forming the functional viral protease. NS3 also contains a C-terminal ATPase/helicase domain that is essential for RNA replication. Here, we identified 47 NS3-interacting partners using the yeast two-hybrid system. Among those partners, we highlight several proteins involved in host energy metabolism, such as apolipoprotein H, aldolase B, cytochrome C oxidase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH directly binds full-length NS3 and its isolated helicase and protease domains. Moreover, we observed an intense colocalization between the GAPDH and NS3 proteins in DENV2-infected Huh7.5.1 cells, in NS3-transfected BHK-21 cells and in hepatic tissue from a fatal dengue case. Taken together, these results suggest that the human GAPDH-DENV NS3 interaction is involved in hepatic metabolic alterations, which may contribute to the appearance of steatosis in dengue-infected patients. The interaction between GAPDH and full-length NS3 or its helicase domain in vitro as well as in NS3-transfected cells resulted in decreased GAPDH glycolytic activity. Reduced GAPDH glycolytic activity may lead to the accumulation of metabolic intermediates, shifting metabolism to alternative, non-glycolytic pathways. This report is the first to identify the interaction of the DENV2 NS3 protein with the GAPDH protein and to demonstrate that this interaction may play an important role in the molecular mechanism that triggers hepatic alterations.


Assuntos
Vírus da Dengue/fisiologia , Dengue/metabolismo , Dengue/virologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/metabolismo , Animais , Biomarcadores , Linhagem Celular , Imunofluorescência , Glicólise , Humanos , Imuno-Histoquímica , Cinética , Fígado/metabolismo , Fígado/virologia , Ligação Proteica , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo
9.
Front Microbiol ; 8: 213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261172

RESUMO

The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses.

10.
Front. Microbiol. ; 8: 213, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15437

RESUMO

The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses.

11.
J Virol ; 89(23): 11871-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378175

RESUMO

UNLABELLED: Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE: Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the extracellular milieus. Despite the fact that NS1 has been commonly associated with DENV pathogenesis, it plays a pivotal but unknown role in the replication process. In an effort to understand the role of intracellular NS1, we demonstrate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with NS1. Our results indicate that NS1 increases the glycolytic activity of GAPDH in vitro. Interestingly, the GAPDH activity was increased during DENV infection, and NS1 expression alone was sufficient to enhance intracellular GAPDH activity in BHK-21 cells. Overall, our findings suggest that NS1 is an important modulator of cellular energy metabolism by increasing glycolytic flux.


Assuntos
Metabolismo Energético/fisiologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Modelos Moleculares , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Análise de Variância , Animais , Linhagem Celular , Cromatografia Líquida , Cricetinae , Ensaio de Imunoadsorção Enzimática , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Ligação Proteica , Espectrometria de Massas em Tandem , Proteínas não Estruturais Virais/genética
12.
PLoS One ; 8(3): e57514, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516407

RESUMO

Dengue constitutes a global health concern. The clinical manifestation of this disease varies from mild febrile illness to severe hemorrhage and/or fatal hypovolemic shock. Flavivirus nonstructural protein 1 (NS1) is a secreted glycoprotein that is displayed on the surface of infected cells but is absent in viral particles. NS1 accumulates at high levels in the plasma of dengue virus (DENV)-infected patients, and previous reports highlight its involvement in immune evasion, dengue severity, liver dysfunction and pathogenesis. In the present study, we performed a yeast two-hybrid screen to search for DENV2 NS1-interacting partners using a human liver cDNA library. We identified fifty genes, including human complement component 1 (C1q), which was confirmed by coimmunoprecipitation, ELISA and immunofluorescence assays, revealing for the first time the direct binding of this protein to NS1. Furthermore, the majority of the identified genes encode proteins that are secreted into the plasma of patients, and most of these proteins are classified as acute-phase proteins (APPs), such as plasminogen, haptoglobin, hemopexin, α-2-HS-glycoprotein, retinol binding protein 4, transferrin, and C4. The results presented here confirm the direct interaction of DENV NS1 with a key protein of the complement system and suggest a role for this complement protein in the pathogenesis of DENV infection.


Assuntos
Proteínas de Transporte/metabolismo , Complemento C1q/metabolismo , Fígado/metabolismo , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Cricetinae , Biblioteca Gênica , Humanos , Fígado/virologia , Plasmídeos , Ligação Proteica , Transporte Proteico , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA