Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 6439, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833254

RESUMO

G protein-coupled receptors (GPCRs) are prominent drug targets responsible for extracellular-to-intracellular signal transduction. GPCRs can form functional dimers that have been poorly characterized so far. Here, we show the dimerization mechanism of the chemokine receptors CCR5 and CXCR4 by means of an advanced free-energy technique named coarse-grained metadynamics. Our results reproduce binding events between the GPCRs occurring in the minute timescale, revealing a symmetric and an asymmetric dimeric structure for each of the three investigated systems, CCR5/CCR5, CXCR4/CXCR4, and CCR5/CXCR4. The transmembrane helices TM4-TM5 and TM6-TM7 are the preferred binding interfaces for CCR5 and CXCR4, respectively. The identified dimeric states differ in the access to the binding sites of the ligand and G protein, indicating that dimerization may represent a fine allosteric mechanism to regulate receptor activity. Our study offers structural basis for the design of ligands able to modulate the formation of CCR5 and CXCR4 dimers and in turn their activity, with therapeutic potential against HIV, cancer, and immune-inflammatory diseases.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Dimerização , Receptores Acoplados a Proteínas G/metabolismo , Sítios de Ligação , Receptores de Quimiocinas/metabolismo , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo
3.
J Chem Theory Comput ; 19(18): 6047-6061, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656199

RESUMO

Computational techniques applied to drug discovery have gained considerable popularity for their ability to filter potentially active drugs from inactive ones, reducing the time scale and costs of preclinical investigations. The main focus of these studies has historically been the search for compounds endowed with high affinity for a specific molecular target to ensure the formation of stable and long-lasting complexes. Recent evidence has also correlated the in vivo drug efficacy with its binding kinetics, thus opening new fascinating scenarios for ligand/protein binding kinetic simulations in drug discovery. The present article examines the state of the art in the field, providing a brief summary of the most popular and advanced ligand/protein binding kinetics techniques and evaluating their current limitations and the potential solutions to reach more accurate kinetic models. Particular emphasis is put on the need for a paradigm change in the present methodologies toward ligand and protein parametrization, the force field problem, characterization of the transition states, the sampling issue, and algorithms' performance, user-friendliness, and data openness.


Assuntos
Algoritmos , Proteínas , Ligação Proteica , Ligantes , Proteínas/química , Aprendizado de Máquina , Cinética , Simulação de Dinâmica Molecular
4.
EMBO Rep ; 24(4): e55571, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36744302

RESUMO

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, renal abnormalities, postaxial polydactyly, and developmental defects. Genes mutated in BBS encode for components and regulators of the BBSome, an octameric complex that controls the trafficking of cargos and receptors within the primary cilium. Although both structure and function of the BBSome have been extensively studied, the impact of ubiquitin signaling on BBSome is largely unknown. We identify the E3 ubiquitin ligase PJA2 as a novel resident of the ciliary compartment and regulator of the BBSome. Upon GPCR-cAMP stimulation, PJA2 ubiquitylates BBSome subunits. We demonstrate that ubiquitylation of BBS1 at lysine 143 increases the stability of the BBSome and promotes its binding to BBS3, an Arf-like GTPase protein controlling the targeting of the BBSome to the ciliary membrane. Downregulation of PJA2 or expression of a ubiquitylation-defective BBS1 mutant (BBS1K143R ) affects the trafficking of G-protein-coupled receptors (GPCRs) and Shh-dependent gene transcription. Expression of BBS1K143R in vivo impairs cilium formation, embryonic development, and photoreceptors' morphogenesis, thus recapitulating the BBS phenotype in the medaka fish model.


Assuntos
Síndrome de Bardet-Biedl , Cílios , Animais , Cílios/metabolismo , Transporte Proteico , Transdução de Sinais , Síndrome de Bardet-Biedl/genética , Receptores Acoplados a Proteínas G/genética , Ubiquitinação
5.
ACS Omega ; 8(6): 5983-5994, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816679

RESUMO

Retinoic acid receptor-related orphan receptor γ-t (RORγt) and GPBAR1, a transmembrane G-protein-coupled receptor for bile acids, are attractive drug targets to develop clinically relevant small modulators as potent therapeutics for autoimmune diseases. Herein, we designed, synthesized, and evaluated several new bile acid-derived ligands with potent dual activity. Furthermore, we performed molecular docking and MD calculations of the best dual modulators in the two targets to identify the binding modes as well as to better understand the molecular basis of the inverse agonism of RORγt by bile acid derivatives. Among these compounds, 7 was identified as a GPBAR1 agonist (EC50 5.9 µM) and RORγt inverse agonist (IC50 0.107 µM), with excellent pharmacokinetic properties. Finally, the most promising ligand displayed robust anti-inflammatory activity in vitro and in vivo in a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis.

6.
Front Pharmacol ; 13: 858137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559268

RESUMO

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two highly prevalent human diseases caused by excessive fat deposition in the liver. Although multiple approaches have been suggested, NAFLD/NASH remains an unmet clinical need. Here, we report the discovery of a novel class of hybrid molecules designed to function as cysteinyl leukotriene receptor 1 (CysLT1R) antagonists and G protein bile acid receptor 1 (GPBAR1/TGR5) agonists for the treatment of NAFLD/NASH. The most potent of these compounds generated by harnessing the scaffold of the previously described CystLT1R antagonists showed efficacy in reversing liver histopathology features in a preclinical model of NASH, reshaping the liver transcriptome and the lipid and energy metabolism in the liver and adipose tissues. In summary, the present study described a novel orally active dual CysLT1R antagonist/GPBAR1 agonist that effectively protects against the development of NAFLD/NASH, showing promise for further development.

7.
J Med Chem ; 64(22): 16512-16529, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34767347

RESUMO

G-protein-coupled receptors (GPCRs) are the molecular target of 40% of marketed drugs and the most investigated structures to develop novel therapeutics. Different members of the GPCRs superfamily can modulate the same cellular process acting on diverse pathways, thus representing an attractive opportunity to achieve multitarget drugs with synergic pharmacological effects. Here, we present a series of compounds with dual activity toward cysteinyl leukotriene receptor 1 (CysLT1R) and G-protein-coupled bile acid receptor 1 (GPBAR1). They are derivatives of REV5901─the first reported dual compound─with therapeutic potential in the treatment of colitis and other inflammatory processes. We report the binding mode of the most active compounds in the two GPCRs, revealing unprecedented structural basis for future drug design studies, including the presence of a polar group opportunely spaced from an aromatic ring in the ligand to interact with Arg792.60 of CysLT1R and achieve dual activity.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores de Leucotrienos/efeitos dos fármacos , Animais , Colite/tratamento farmacológico , Humanos , Leucotrieno D4/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leucotrienos/metabolismo , Relação Estrutura-Atividade
8.
Soft Matter ; 16(44): 10169-10179, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33165494

RESUMO

CREKA (Cys-Arg-Glu-Lys-Ala) and its engineered analogue CRMeEKA, in which Glu has been replaced by N-methyl-Glu to provide resistance against proteolysis, are emerging pentapeptides that were specifically designed to bind fibrin-fibronectin complexes accumulated in the walls of tumour vessels. However, many of the intrinsic properties of CREKA and CRMeEKA, which are probably responsible for their different behaviour when combined with other materials (such as polymers) for diagnosis and therapeutics, remain unknown yet. The intrinsic tendency of these pentapeptides to form aggregates has been analysed by combining experimental techniques and atomistic Molecular Dynamics (MD) simulations. Dynamic light scattering assays show the formation of nanoaggregates that increase in size with the peptide concentration, even though aggregation occurs sooner for CRMeEKA, independently of the peptide concentration. FTIR and circular dichroism spectroscopy studies suggest that aggregated pentapeptides do not adopt any secondary structure. Atomistic MD trajectories show that CREKA aggregates faster and forms bigger molecular clusters than CRMeEKA. This behaviour has been explained by stability of the conformations adopted by un-associated peptide strands. While CREKA molecules organize by forming intramolecular backbone - side chain hydrogen bonds, CRMeEKA peptides display main chain - main chain hydrogen bonds closing very stable γ- or ß-turns. Besides, energetic analyses reveal that CRMeEKA strands are better solvated in water than CREKA ones, independent of whether they are assembled or un-associated.


Assuntos
Fibrina , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Peptídeos , Estrutura Secundária de Proteína
9.
Nat Commun ; 11(1): 3714, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709852

RESUMO

The detailed understanding of the binding of small molecules to proteins is the key for the development of novel drugs or to increase the acceptance of substrates by enzymes. Nowadays, computer-aided design of protein-ligand binding is an important tool to accomplish this task. Current approaches typically rely on high-throughput docking essays or computationally expensive atomistic molecular dynamics simulations. Here, we present an approach to use the recently re-parametrized coarse-grained Martini model to perform unbiased millisecond sampling of protein-ligand interactions of small drug-like molecules. Remarkably, we achieve high accuracy without the need of any a priori knowledge of binding pockets or pathways. Our approach is applied to a range of systems from the well-characterized T4 lysozyme over members of the GPCR family and nuclear receptors to a variety of enzymes. The presented results open the way to high-throughput screening of ligand libraries or protein mutations using the coarse-grained Martini model.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas/química , Bacteriófago T4/enzimologia , Biofísica , Biologia Computacional , Ensaios de Triagem em Larga Escala , Ligantes , Simulação de Acoplamento Molecular , Muramidase/química , Conformação Proteica , Termodinâmica
10.
Biochem Pharmacol ; 177: 113987, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330496

RESUMO

The cysteinyl leukotrienes (CysLTs), i.e. LTC4, LTD4 and LTE4, are a family of proinflammatory agents synthesized from the arachidonic acid. In target cells, these lipid mediators bind to the cysteinyl leukotriene receptors (CysLTR), a family of seven transmembrane G-protein coupled receptors. The CysLT1R is a validated target for treatment of pulmonary diseases and several selective antagonists for this receptor, including montelukast, zafirlukast and pranlukast, have shown effective in the management of asthma. Nevertheless, others CysLT1R antagonists, such as the alpha-pentyl-3-[2-quinolinylmethoxy] benzyl alcohol (REV5901), have been extensively characterized without reaching sufficient priority for clinical development. Since drug reposition is an efficient approach for maximizing investment in drug discovery, we have investigated whether CysLT1R antagonists might exert off-target effects. In the report we demonstrate that REV5901 interacts with GPBAR1, a well characterized cell membrane receptor for secondary bile acids. REV5901 transactivates GPBAR1 in GPBAR1-transfected cells with an EC50 of 2.5 µM and accommodates the GPBAR1 binding site as shown by in silico analysis. Exposure of macrophages to REV5901 abrogates the inflammatory response elicited by bacterial endotoxin in a GPBAR1-dependent manner. In vivo, in contrast to montelukast, REV5901 attenuates inflammation and immune dysfunction in rodent models of colitis. The beneficial effects exerted by REV5901 in these models were abrogated by GPBAR1 gene ablation, confirming that REV5901, a shelved CysLT1R antagonist, is a GPBAR1 ligand. These data ground the basis for the development of novel hybrid ligands designed for simultaneous modulation of CysTL1R and GPBAR1.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Colite/tratamento farmacológico , Antagonistas de Leucotrienos/farmacologia , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leucotrienos/metabolismo , Acetatos/farmacologia , Animais , Ácidos e Sais Biliares/farmacologia , Colite/genética , Colite/metabolismo , Colite/patologia , Ciclopropanos , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Células HEK293 , Células Hep G2 , Humanos , Leucotrieno C4/metabolismo , Leucotrieno D4/metabolismo , Leucotrieno E4/metabolismo , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Células RAW 264.7 , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de Leucotrienos/química , Receptores de Leucotrienos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sulfetos
11.
Adv Healthc Mater ; 6(23)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28945012

RESUMO

Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity.


Assuntos
Cetuximab , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/antagonistas & inibidores , Ouro , Nanopartículas Metálicas/química , Peptídeos , Polietilenoglicóis , Células CACO-2 , Cetuximab/química , Cetuximab/farmacologia , Receptores ErbB/metabolismo , Ouro/química , Ouro/farmacologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
12.
Molecules ; 22(7)2017 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-28737669

RESUMO

Temporin L (TempL) is a 13 residue Host Defense Peptide (HDP) isolated from the skin of frogs. It has a strong affinity for lipopolysaccharides (LPS), which is related to its high activity against Gram-negative bacteria and also to its strong tendency to neutralize the pro-inflammatory response caused by LPS release from inactivated bacteria. A designed analog with the Q3K substitution shows an enhancement in both these activities. In the present paper, Molecular Dynamics (MD) simulations have been used to investigate the origin of these improved properties. To this end, we have studied the behavior of the peptides both in water solution and in the presence of LPS lipid-A bilayers, demonstrating that the main effect through which the Q3K substitution improves the peptide activities is the destabilization of peptide aggregates in water.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Peptídeos/química , Proteínas/química , Água/química , Lipopolissacarídeos/química
13.
Molecules ; 22(3)2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28282944

RESUMO

The effects that an increase of environmental pH has on the triple helix of scleroglucan (Sclg) and on the Sclg/borax hydrogel are reported. Rheological experiments show that the hydrogel is less sensitive to pH increase than Sclg alone, while at pH = 14 a dramatic viscosity decrease takes place for both systems. This effect is evidenced also by the reduced water uptake and anisotropic elongation detected, at pH = 14, by the swelling behaviour of tablets prepared with the Sclg/borax system. On the opposite, a different behaviour was observed with guar gum and locust bean gum tablets, tested as reference polysaccharides. The effect of pH on the structure of Sclg and Sclg/borax was investigated also by means of spectroscopic approaches based on the interaction between Congo red (CR) and the Sclg triple helix. Obtained results indicated that the CR absorbance maximum is shifted as a function of pH and by the presence of borax. Principal component analysis allowed very precise identification of the pH value at which the Sclg helix collapses. Molecular dynamics simulations of the Sclg/borax-CR complex indicated that, at physiological pH, only a few ordered configurations are populated, according to the induced circular dichroism (CD) spectrum evidence.


Assuntos
Boratos/química , Glucanos/química , Concentração de Íons de Hidrogênio , Dicroísmo Circular , Elasticidade , Hidrogéis/química , Ligação de Hidrogênio , Conformação Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Reologia , Comprimidos/química , Viscosidade
14.
J Pept Sci ; 20(7): 494-507, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24845474

RESUMO

Interactions between peptides are relevant from a biomedical point of view, in particular for the role played by their aggregates in different important pathologies, and also because peptide aggregates represent promising scaffolds for innovative materials. In the present article, the aggregation properties of the homo-peptides formed by α-aminoisobutyric acid (U) residues are discussed. The peptides investigated have chain lengths between six and 15 residues and comprise benzyl and naphthyl groups at the N- and C-termini, respectively. Spectroscopic experiments and molecular dynamics simulations show that the shortest homo-peptide, constituted by six U, does not exhibit any tendency to aggregate under the conditions examined. On the other hand, the homologous peptide with 15 U forms very stable and compact aggregates in 70/30(v/v) methanol/water solution. Atomic force microscopy images indicate that these aggregates promote formation of long fibrils once they are deposited on a mica surface. The aggregation phenomenon is mainly due to hydrophobic interactions occurring between very stable helical structures, and the aromatic groups in the peptides seem to play a minor role.


Assuntos
Ácidos Aminoisobutíricos/química , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Microscopia de Força Atômica , Agregados Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA