Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 5781-5795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869063

RESUMO

Background: The emergence of the coronavirus disease 2019 (COVID-19) pandemic and the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) requires the continuous development of safe, effective, and affordable prevention and therapeutics. Nanobodies have demonstrated antiviral activity against a variety of viruses, providing a new candidate for the prevention and treatment of SARS-CoV-2 and its variants. Methods: SARS-CoV-2 glycoprotein spike 1 subunit (S1) was selected as the target antigen for nanobody screening of a naïve phage display library. We obtained a nanobody, named Nb-H6, and then determined its affinity, inhibition, and stability by ELISA, Competitive ELISA, and Biolayer Interferometry (BLI). Infection assays of authentic and pseudotyped SARS-CoV-2 were performed to evaluate the neutralization of Nb-H6. The structure and mechanism of action were investigated by AlphaFold, docking, and residue mutation assays. Results: We isolated and characterized a nanobody, Nb-H6, which exhibits a broad affinity for S1 and the receptor binding domain (RBD) of SARS-CoV-2, or Alpha (B.1.1.7), Delta (B.1.617.2), Lambda (C.37), and Omicron (BA.2 and BA.5), and blocks receptor angiotensin-converting enzyme 2 (ACE2) binding. Moreover, Nb-H6 can retain its binding capability after pH or thermal treatment and effectively neutralize both pseudotyped and authentic SARS-CoV-2, as well as VOC Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (BA.2 and BA.5) pseudoviruses. We also confirmed that Nb-H6 binds two distinct amino acid residues of the RBD, preventing SARS-CoV-2 from interacting with the host receptor. Conclusion: Our study highlights a novel nanobody, Nb-H6, that may be useful therapeutically in SARS-CoV-2 and VOC outbreaks and pandemics. These findings also provide a molecular foundation for further studies into how nanobodies neutralize SARS-CoV-2 and variants and imply potential therapeutic targets for the treatment of COVID-19.


Assuntos
Bacteriófagos , COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2 , Anticorpos de Domínio Único/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais
2.
Immunol Invest ; 52(3): 319-331, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36719801

RESUMO

BACKGROUND AND AIMS: Gout is a chronic self-limiting inflammatory arthritis. An increase in metallothionein-1 (MT-1) has been reported in rheumatoid arthritis and osteoarthritis, and it attenuates inflammation and the pathology of diseases. This study aims to detect MT-1 levels in patients with gout and to explore its correlation with disease activity, clinical indexes, and inflammatory cytokines. METHODS: The expression of MT-1 messenger RNAs (mRNAs) and protein levels in patients with gout were measured using real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Correlations between MT-1 and clinical indexes or inflammatory mediators were analyzed using Spearman's correlation test. RESULTS: Compared with healthy controls (HCs, n = 43), patients with active gout (n = 27) showed higher levels of MT-1 mRNA in peripheral blood mononuclear cells and protein in serum, particularly those with tophi. No significant difference in serum MT-1 levels was observed among patients with inactive gout, HCs, and patients with hyperuricemia without gout. Furthermore, no significant difference was observed between patients with gout with kidney damage and HCs. In addition, serum interleukin (IL)-1ß, IL-6, and IL-8 levels were significantly increased in patients with active gout, particularly in those with tophi. The serum MT-1 level was positively correlated with C-reactive protein, as well as with IL-1ß, IL-6, and IL-18. CONCLUSION: The higher levels of MT-1 were found in patients with gout, which were correlated with disease activity and gout related pro-inflammatory cytokines. Indicating MT-1 may serve as a new marker for predicting disease activity.Abbreviations: IL-1ß: Interleukin 1ß; MT-1: Metallothionein-1; CRP: C-Reactive Protein; ROS: Reactive Oxygen Species; IL-10: Interleukin 10; TGF-ß: Transforming Growth Factor Beta.


Assuntos
Gota , Interleucina-6 , Humanos , Interleucina-6/genética , Leucócitos Mononucleares/metabolismo , Proteína C-Reativa/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Gota/genética , Citocinas/metabolismo
3.
Theranostics ; 12(11): 5204-5219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836813

RESUMO

Background: Inflammatory bowel disease (IBD) involves complicated crosstalk between host immunity and the gut microbiome, whereas the mechanics of how they govern intestinal inflammation remain poorly understood. In this study, we investigated the contribution of environmental factors to shaping gut microbiota composition in colitis mice that were transgenic for human IL-37, a natural anti-inflammatory cytokine possessing pathogenic and protective functions related to microbiota alterations. Methods: Mice transgenic expressing human IL-37 (IL-37tg) were housed under conventional and specific pathogen-free (SPF) conditions to develop a mouse model of dextran sulfate sodium (DSS)-induced colitis. 16S ribosomal RNA sequencing was used for analyzing fecal microbial communities. The efficacy of microbiota in the development of colitis in IL-37tg mice was investigated after antibiotic treatment and fecal microbiota transplantation (FMT). The mechanism by which IL-37 worsened colitis was studied by evaluating intestinal epithelial barrier function, immune cell infiltration, the expression of diverse cytokines and chemokines, as well as activated signaling pathways. Results: We found that IL-37 overexpression aggravated DSS-induced colitis in conventional mice but protected against colitis in SPF mice. These conflicting results from IL-37tg colitis mice are ascribed to a dysbiosis of the gut microbiota in which detrimental bacteria increased in IL-37tg conventional mice. We further identified that the outcome of IL-37-caused colon inflammation is strongly related to intestinal epithelial barrier impairment caused by pathogenic bacteria, neutrophils, and NK cells recruitment in colon lamina propria and mesenteric lymph node to enhance inflammatory responses in IL-37tg conventional mice. Conclusions: The immunoregulatory properties of IL-37 are detrimental in the face of dysbiosis of the intestinal microbiota, which contributes to exacerbated IBD occurrences that are uncontrollable by the immune system, suggesting that depleting gut pathogenic bacteria or maintaining intestinal microbial and immune homeostasis could be a promising therapeutic strategy for IBD.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Bactérias , Colite/patologia , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/metabolismo , Humanos , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
Int Immunopharmacol ; 96: 107670, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33984722

RESUMO

Food antigens are closely related to progression of inflammatory bowel disease; however, details of how they induce intestinal immune responses and causes intestinal inflammation is not yet clear. The present study aimed to examine the effects of oral collagen on the intestinal mucosa, and elucidate the mechanism of food antigen-induced enteritis. Here, we provide evidence that Aspirin (a mucosal-damaging agent) and type II collagen (CII; a food antigen) acted synergistically to disrupt the intestinal mucosal barrier, and increase intestinal permeability, which resulted in a large amount of CII entered into the lamina propria, where it interacted with the intestinal immune system, promoted intestinal inflammation, and shaped innate and adaptive immune reactions into Th1-dominant. The underlying mechanism of the CII-induced intestinal inflammation may associate with higher levels of Th1, TLR2 and TLR4, and lower levels of Th2 in the intestine of Aspirin + CII treated rats. The study indicate that compromised integrity of the intestinal barrier appears to be a prerequisite for CII-induced intestinal inflammation. The synergistic effect of food antigens and mucosal barrier injury is an important cause of intestinal inflammation. This new understanding the role of food antigen on intestinal inflammation will provide us with a new strategy for treatment and prevention of intestinal inflammation.


Assuntos
Aspirina/toxicidade , Colite/induzido quimicamente , Colágeno Tipo II/toxicidade , Inflamação/patologia , Mucosa Intestinal/patologia , Células Th1/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Colite/patologia , Modelos Animais de Doenças , Feminino , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Ratos , Ratos Wistar , Receptor 4 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA