Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10478-10488, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578196

RESUMO

During biomedical applications, nanozymes, exhibiting enzyme-like characteristics, inevitably come into contact with biological fluids in living systems, leading to the formation of a protein corona on their surface. Although it is acknowledged that molecular adsorption can influence the catalytic activity of nanozymes, there is a dearth of understanding regarding the impact of the protein corona on nanozyme activity and its determinant factors. In order to address this gap, we employed the AuNR@Pt@PDDAC [PDDAC, poly(diallyldimethylammonium chloride)] nanorod (NR) as a model nanozyme with multiple activities, including peroxidase, oxidase, and catalase-mimetic activities, to investigate the inhibitory effects of the protein corona on the catalytic activity. After the identification of major components in the plasma protein corona on the NR, we observed that spherical proteins and fibrous proteins induced distinct inhibitory effects on the catalytic activity of nanozymes. To elucidate the underlying mechanism, we uncovered that the adsorbed proteins assembled on the surface of the nanozymes, forming protein networks (PNs). Notably, the PNs derived from fibrous proteins exhibited a screen mesh-like structure with smaller pore sizes compared to those formed by spherical proteins. This structural disparity resulted in a reduced efficiency for the permeation of substrate molecules, leading to a more robust inhibition in activity. These findings underscore the significance of the protein shape as a crucial factor influencing nanozyme activity. This revelation provides valuable insights for the rational design and application of nanozymes in the biomedical fields.


Assuntos
Nanoestruturas , Coroa de Proteína , Escleroproteínas , Peroxidase , Adsorção , Corantes , Catálise
2.
Mater Horiz ; 10(8): 2927-2935, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37158992

RESUMO

Induction of immunogenic cell death (ICD) by hyperthermia can initiate adaptive immune responses, emerging as an attractive strategy for tumor immunotherapy. However, ICD can induce proinflammatory factor interferon-γ (IFN-γ) production, leading to indoleamine 2,3-dioxygenase 1 (IDO-1) activation and an immunosuppressive tumor microenvironment, which dramatically reduces the ICD-triggered immunotherapeutic efficacy. Herein, we developed a bacteria-nanomaterial hybrid system (CuSVNP20009NB) to systematically modulate the tumor immune microenvironment and improve tumor immunotherapy. Attenuated Salmonella typhimurium (VNP20009) that can chemotactically migrate to the hypoxic area of the tumor and repolarize tumor-associated macrophages (TAMs) was employed to intracellularly biosynthesize copper sulfide nanomaterials (CuS NMs) and extracellularly hitchhike NLG919-embedded and glutathione (GSH)-responsive albumin nanoparticles (NB NPs), forming CuSVNP20009NB. After intravenous injection into B16F1 tumor-bearing mice, CuSVNP20009NB could accumulate in tumor tissues and repolarize TAMs from the immunosuppressive M2 to immunostimulatory M1 phenotype and release NLG919 from extracellular NB NPs to inhibit IDO-1 activity. Under further near infrared laser irradiation, intracellular CuS NMs of CuSVNP20009NB could photothermally induce ICD including calreticulin (CRT) expression and high mobility group box 1 (HMGB-1) release, promoting intratumoral infiltration of cytotoxic T lymphocytes. Finally, CuSVNP20009NB with excellent biocompatibility could systematically augment immune responses and significantly inhibit tumor growth, holding great promise for tumor therapy.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Animais , Camundongos , Nanoestruturas/uso terapêutico , Neoplasias/terapia , Nanopartículas/uso terapêutico , Linfócitos T Citotóxicos , Imunidade , Microambiente Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-37037205

RESUMO

Drug-resistant bacteria and highly infectious viruses are among the major global threats affecting the human health. There is an immediate need for novel strategies to tackle this challenge. Copper-based nanoparticles (CBNPs) have exhibited a broad antimicrobial capacity and are receiving increasing attention in this context. In this review, we describe the functionalization of CBNPs, elucidate their antibacterial and antiviral activity as well as applications, and briefly review their toxicity, biodistribution, and persistence. The limitations of the current study and potential solutions are also shortly discussed. The review will guide the rational design of functional nanomaterials for antimicrobial application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Humanos , Cobre , Distribuição Tecidual , Antibacterianos/uso terapêutico
4.
Adv Drug Deliv Rev ; 191: 114615, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356929

RESUMO

With excellent physicochemical properties, inorganic nanomaterials (INMs) have exhibited a series of attractive applications in biomedical fields. Biological barriers prevent successful delivery of nanomedicine in living systems that limits the development of nanomedicine especially for sufficient delivery of drugs and effective therapy. Numerous researches have focused on overcoming these biological barriers and homogeneity of organisms to enhance therapeutic efficacy, however, most of these strategies fail to resolve these challenges. In this review, we present the latest progress about how INMs interact with biological barriers and penetrate these barriers. We also summarize that both native structure and components of biological barriers and physicochemical properties of INMs contributed to the penetration capacity. Knowledge about the relationship between INMs structure and penetration capacity will guide the design and application of functional and efficient nanomedicine in the future.


Assuntos
Nanomedicina , Nanoestruturas , Humanos , Nanoestruturas/química
5.
ACS Nano ; 16(11): 18253-18265, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36288552

RESUMO

Periodontitis is a chronic inflammatory disease caused by the interaction of oral microorganisms with the host immune response. Porphyromonas gingivalis (P.g.) acts as a key mediator in subverting the homeostasis of the local immune system. On the one hand, P.g. inhibits phagocytosis and the killing capacity of immune cells. On the other hand, P.g. increases selective cytokine release, which is beneficial to its further proliferation. Here, we prepared a penetrating macrophage-based nanoformulation (MZ@PNM)-encapsulating hydrogel (MZ@PNM@GCP) that responded to the periodontitis microenvironment. MZ@PNM targeted P.g. via the Toll-like receptor complex 2/1 (TLR2/1) on its macrophage-mimicking membrane, then directly killed P.g. through disruption of bacterial structural integrity by the cationic nanoparticles and intracellular release of an antibacterial drug, metronidazole (MZ). Meanwhile, MZ@PNM interrupted the specific binding of P.g. to immune cells and neutralized complement component 5a (C5a), preventing P.g. subversion of periodontal host immune response. Overall, MZ@PNM@GCP showed potent efficacy in periodontitis treatment, restoring local immune function and killing pathogenic bacteria, while exhibiting favorable biocompatibility, all of which have been demonstrated both in vivo and in vitro.


Assuntos
Periodontite , Humanos , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Porphyromonas gingivalis/fisiologia , Macrófagos/metabolismo , Citocinas
6.
Nat Commun ; 13(1): 5389, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104325

RESUMO

How soft corona, the protein corona's outer layer, contributes to biological identity of nanomaterials is largely because capturing protein composition of the soft corona in situ remains challenging. We herein develop an in situ Fishing method that can monitor the dynamic formation of protein corona on ultra-small chiral Cu2S nanoparticles (NPs) allowing us to directly separate and identify the corona protein composition. Our method detects spatiotemporal processes in the evolution of hard and soft coronas on chiral NPs, revealing subtle differences in NP - protein interactions even within several minutes. This study highlights the importance of in situ and dynamic analysis of soft/hard corona, provides insights into the role of soft corona in mediating biological responses of NPs, and offers a universal strategy to characterize soft corona to guide the rational design of biomedical nanomaterials.


Assuntos
Nanopartículas , Nanoestruturas , Coroa de Proteína , Proteínas
7.
Nat Nanotechnol ; 17(9): 993-1003, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995853

RESUMO

The global emergency caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can only be solved with effective and widespread preventive and therapeutic strategies, and both are still insufficient. Here, we describe an ultrathin two-dimensional CuInP2S6 (CIPS) nanosheet as a new agent against SARS-CoV-2 infection. CIPS exhibits an extremely high and selective binding capacity (dissociation constant (KD) < 1 pM) for the receptor binding domain of the spike protein of wild-type SARS-CoV-2 and its variants of concern, including Delta and Omicron, inhibiting virus entry and infection in angiotensin converting enzyme 2 (ACE2)-bearing cells, human airway epithelial organoids and human ACE2-transgenic mice. On association with CIPS, the virus is quickly phagocytosed and eliminated by macrophages, suggesting that CIPS could be successfully used to capture and facilitate virus elimination by the host. Thus, we propose CIPS as a promising nanodrug for future safe and effective anti-SARS-CoV-2 therapy, and as a decontamination agent and surface-coating material to reduce SARS-CoV-2 infectivity.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanoestruturas , Enzima de Conversão de Angiotensina 2 , Animais , Humanos , Camundongos , Nanoestruturas/uso terapêutico , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Front Immunol ; 12: 676773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968087

RESUMO

Perovskite nanomaterials (NMs) possess excellent physicochemical properties and have promising applications in light-emitting diodes (LEDs), lasers, photodetectors, and artificial synapse electronics. Potential exposure to these NMs happens in the manufacture and application of the perovskite-based products, however, the biological safety of these NMs is still unknown. Here, we used the LaNiO3 NM (LNO), a typical kind of perovskite nanostructures to study the interaction with macrophages (J774A.1) and to explore its biological effects at the cellular level. Firstly, we characterized the properties of LNO including the size, shape, and crystal structure using Transmission electronic microscope (TEM), Dynamic lighting scattering (DLS), and X-ray diffraction (XRD). Secondly, to gain a better understanding of the biological effect, we evaluated the effect of LNO on cell viability and found that LNO induced cell autophagy at a concentration of 5 µg/ml and influenced the inflammatory response based on RT-PCR result. Finally, we demonstrated the mechanism that LNO causes cell autophagy and immune response is probably due to the metal ions released from LNO in acidic lysosomes, which triggered ROS and increased lysosomal membrane permeation. This study indicates the safety aspect of perovskite NMs and may guide the rational design of perovskite NMs with more biocompatibility during their manufacture and application.


Assuntos
Autofagia/efeitos dos fármacos , Compostos de Cálcio/efeitos adversos , Compostos de Cálcio/química , Imunidade/efeitos dos fármacos , Macrófagos/imunologia , Nanoestruturas/química , Óxidos/efeitos adversos , Óxidos/química , Titânio/efeitos adversos , Titânio/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Nat Nanotechnol ; 16(6): 708-716, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33603238

RESUMO

Many nanoscale biomaterials fail to reach the clinical trial stage due to a poor understanding of the fundamental principles of their in vivo behaviour. Here we describe the transport, transformation and bioavailability of MoS2 nanomaterials through a combination of in vivo experiments and molecular dynamics simulations. We show that after intravenous injection molybdenum is significantly enriched in liver sinusoid and splenic red pulp. This biodistribution is mediated by protein coronas that spontaneously form in the blood, principally with apolipoprotein E. The biotransformation of MoS2 leads to incorporation of molybdenum into molybdenum enzymes, which increases their specific activities in the liver, affecting its metabolism. Our findings reveal that nanomaterials undergo a protein corona-bridged transport-transformation-bioavailability chain in vivo, and suggest that nanomaterials consisting of essential trace elements may be converted into active biological molecules that organisms can exploit. Our results also indicate that the long-term biotransformation of nanomaterials may have an impact on liver metabolism.


Assuntos
Dissulfetos/farmacocinética , Molibdênio/química , Molibdênio/farmacocinética , Nanoestruturas/química , Administração Intravenosa , Animais , Apolipoproteínas E/genética , Disponibilidade Biológica , Biotransformação , Proteínas Sanguíneas/metabolismo , Dissulfetos/análise , Feminino , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Molibdênio/análise , Molibdênio/sangue , Nanoestruturas/administração & dosagem , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Baço/citologia , Baço/efeitos dos fármacos , Distribuição Tecidual
10.
Anal Chem ; 92(1): 975-982, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808334

RESUMO

As a representative transition metal, iron plays a key role in chemical activities of atmospheric particulate matter (PM), being involved in particle-related free radical generation and adverse health effects. However, limited understanding of the structure and properties of individual micrometer-sized particulates obscures investigating the contributions of iron toward chemical activities. Here, we describe multidimensional analytical strategies to characterize the mass, spatial distribution, and chemical forms of iron in single haze particles using synchrotron radiation techniques. We first used X-ray fluorescence imaging to quantify the masses of multiple metals and yielded distribution maps of transition metals, which revealed the types of elements that tend to occur together. Additionally, we employed nanocomputed tomography to assess the spatial distribution of iron and observed that iron exists as small aggregates and is concentrated primarily in subsurface regions. We also combined X-ray absorption near structures with scanning transmission X-ray microscopy to quantify the ferrous and ferric forms and mapped their distributions in individual particles, which probably attribute chemical activity of iron. In conclusion, we demonstrated the power of synchrotron radiation-based techniques to study heretofore inaccessible chemical information in single haze particles, which may provide important clues about iron chemistry as a source of Fenton reactions and health effects. The multifaceted analytical approaches exhibit high sensitivity (subfemtogram per particle or ∼0.2 fg/µm2) toward multiple elements and are promising to be used for studying other concepts such as the solubility of aerosol iron, the heterogeneous oxidation of organic matters and SO2, and the formation and the aging of haze particles.

11.
Ann Biomed Eng ; 45(6): 1487-1495, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28194660

RESUMO

A novel apparatus for the multifaceted evaluation of artery function was developed. It measures endothelial and smooth muscle functions and the pressure-strain elastic modulus (E p). A rigid airtight chamber with an ultrasound probe was attached to the upper arm to manipulate the transmural pressure of the brachial artery. Endothelial function was measured via a standard flow-mediated dilation (FMD) protocol. Smooth muscle function was evaluated via a myogenic contraction of the artery following the application of negative pressure to the chamber and was named pressure-mediated contraction (PMC). E p was obtained by measuring the instantaneous increase in the artery diameter following the negative pressure application. The PMC and FMD values had a significant negative correlation with age, indicating that the age-related decrease in FMD is caused by the decay of endothelial and smooth muscle function. A consideration of PMC may help improve the accuracy of artery function measurement. E p in subjects aged >40 years was found to be significantly higher in the supra-physiological pressure range than in the physiological one (p = 0.02); this did not occur in younger subjects. Artery stiffening may begin in the supra-physiological range, and this stiffness may also be used for the diagnosis of atherosclerosis.


Assuntos
Artéria Braquial/fisiologia , Músculo Liso Vascular/fisiologia , Adulto , Idoso , Pressão Arterial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Eur J Neurosci ; 20(2): 419-26, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15233751

RESUMO

We have studied whether Ca(2+)-induced Ca(2+) release (CICR) is involved in the mechanism of long-term potentiation (LTP) at nicotinic synapses of bullfrog sympathetic ganglia. Fast excitatory postsynaptic potentials (fast EPSPs) were recorded in a low-Ca(2+), high-Mg(2+) solution and quantal analysis was applied. The conditioning stimulation of the B-type preganglionic nerve at 20 Hz for 4 min consistently enhanced the amplitude and quantal content of fast EPSP for > 2 h, but only sometimes enhanced the quantal size. The LTP of quantal content produced by the conditioning tetanus was blocked by thapsigargin, a blocker of Ca(2+) pumps at Ca(2+) stores, applied before or after the conditioning tetanus, and by Xestospongin C, a blocker of inositoltrisphosphate (IP(3)) receptors, applied before the tetanus. It was not, however, blocked by ryanodine, a blocker and/or activator of ryanodine receptors, or by propranolol, a blocker of beta-adrenergic receptors. Thus the long-lasting activity of the preganglionic nerve at a high frequency causes the LTP of impulse-evoked transmitter release by the activation of CICR from thapsigargin-sensitive Ca(2+) stores in the nerve terminals. It is likely that a large Ca(2+) entry into the nerve terminals during tetanic activity primes ryanodine-insensitive Ca(2+) release channels for activation.


Assuntos
Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Gânglios Simpáticos/citologia , Potenciação de Longa Duração/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Tapsigargina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos da radiação , Compostos Macrocíclicos , Oxazóis/farmacologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/efeitos da radiação , Propranolol/farmacologia , Rana catesbeiana , Rianodina/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA