Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Emerg Microbes Infect ; 13(1): 2364736, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38847071

RESUMO

Since 2007, h9.4.2.5 has emerged as the most predominant branch of H9N2 avian influenza viruses (AIVs) that affects the majority of the global poultry population. The spread of this viral branch in vaccinated chicken flocks has not been considerably curbed despite numerous efforts. The evolutionary fitness of h9.4.2.5-branched AIVs must consequently be taken into consideration. The glycosylation modifications of hemagglutinin (HA) play a pivotal role in regulating the balance between receptor affinity and immune evasion for influenza viruses. Sequence alignment showed that five major HA glycosylation patterns have evolved over time in h9.4.2.5-branched AIVs. Here, we compared the adaptive phenotypes of five virus mutants with different HA glycosylation patterns. According to the results, the mutant with 6 N-linked glycans displayed the best acid and thermal stability and a better capacity for multiplication, although having a relatively lower receptor affinity than 7 glycans. The antigenic profile between the five mutants revealed a distinct antigenic distance, indicating that variations in glycosylation level have an impact on antigenic drift. These findings suggest that changes in the number of glycans on HA can not only modulate the receptor affinity and antigenicity of H9N2 AIVs, but also affect their stability and multiplication. These adaptive phenotypes may underlie the biological basis for the dominant strain switchover of h9.4.2.5-branched AIVs. Overall, our study provides a systematic insight into how changes in HA glycosylation patterns regulate the evolutionary fitness and epidemiological dominance drift of h9.4.2.5-branched H9N2 AIVs, which will be of great benefit for the glycosylation-dependent vaccine design.


Assuntos
Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Glicosilação , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/metabolismo , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Influenza Aviária/virologia , Galinhas/virologia , Mutação , Polissacarídeos/metabolismo , Replicação Viral , Células Madin Darby de Rim Canino , Doenças das Aves Domésticas/virologia
3.
Vaccines (Basel) ; 11(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38140162

RESUMO

Nipah virus (NiV) causes severe, lethal encephalitis in humans and pigs. However, there is no licensed vaccine available to prevent NiV infection. In this study, we used the reverse genetic system based on the attenuated rabies virus strain SRV9 to construct two recombinant viruses, rSRV9-NiV-F and rSRV9-NiV-G, which displayed the NiV envelope glycoproteins F and G, respectively. Following three immunizations in BALB/c mice, the inactivated rSRV9-NiV-F and rSRV9-NiV-G alone or in combination, mixed with the adjuvants ISA 201 VG and poly (I:C), were able to induce the antigen-specific cellular and Th1-biased humoral immune responses. The specific antibodies against rSRV9-NiV-F and rSRV9-NiV-G had reactivity with two constructed bacterial-like particles displaying the F and G antigens of NiV. These data demonstrate that rSRV9-NiV-F or rSRV9-NiV-G has the potential to be developed into a promising vaccine candidate against NiV infection.

4.
Vaccines (Basel) ; 11(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631859

RESUMO

Infectious bronchitis (IB) is a major threat to the global poultry industry. Despite the availability of commercial vaccines, the IB epidemic has not been effectively controlled. The exploration of novel IBV vaccines may provide a new way to prevent and control IB. In this study, BLP-S1, a bacterium-like particle displaying the S1 subunit of infectious bronchitis virus (IBV), was constructed using the GEM-PA surface display system. The immunoprotective efficacy results showed that BLP-S1 can effectively induce specific IgG and sIgA immune responses, providing a protection rate of 90% against IBV infection in 14-day-old commercial chickens. These results suggest that BLP-S1 has potential for the development of novel vaccines with good immunogenicity and immunoprotection.

5.
Appl Environ Microbiol ; 89(1): e0157222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602303

RESUMO

H5N8, a highly pathogenic avian influenza, has become a new zoonotic threat in recent years. As of December 28, 2021, at least 3,206 H5N8 cases had been reported in wild birds and poultry worldwide. In January 2021, a novel virus strain named A/goose/China/1/2021 was isolated during an H5N8 goose influenza outbreak in northeastern China. The PB2, PB1, HA, and M genes of A/goose/China/1/2021 were highly identical to those of H5N8 strains emerging in Kazakhstan and Russia in Central Asia from August to September 2020, while the remaining four genes had the closest homology to those of H5N8 viruses isolated in South Korea in East Asia from November to December 2020. We thus speculate that A/goose/China/1/2021 is likely a reassortant virus that formed in the 2020 to 2021 influenza season and that the migratory birds via the two migration routes of Central Asia and East Asia-Australia may have played an essential role in the genetic reassortment of this virus. The phylogenetic analysis indicated that the HA genes of H5N8 viruses belonging to group II of subclade 2.3.4.4b, including A/goose/China/1/2021, may be derived from strains in Central Asia. Given the complex global spread of H5N8 virus, our study highlights the necessity to strengthen the function of the global surveillance network for H5N8 virus and to accelerate the pace of vaccine development to confront the current challenges posed by H5N8 virus of subclade 2.3.4.4. IMPORTANCE H5N8, a highly pathogenic avian influenza, not only has an impact on public health, but also has a huge negative impact on animal health, food safety, safety, and even on the local and international economy. The migratory wild birds play a vital role in the intercontinental transmission of H5N8 virus. It is urgent that we should strengthen the function of the global surveillance network for H5N8 virus and accelerate the pace of vaccine development to confront the current challenges posed by H5N8 virus of subclade 2.3.4.4.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , China/epidemiologia , Gansos , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Filogenia
7.
Front Immunol ; 13: 902515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874682

RESUMO

H9N2 and H3N2 are the two most important subtypes of low pathogenic avian influenza viruses (LPAIV) because of their ongoing threat to the global poultry industry and public health. Although commercially available inactivated H9N2 vaccines are widely used in the affected countries, endemic H9N2 avian influenza remains uncontrolled. In addition, there is no available avian H3N2 vaccine. Influenza virus-like particles (VLPs) are one of the most promising vaccine alternatives to traditional egg-based vaccines. In this study, to increase the immunogenic content of VLPs to reduce production costs, we developed chimeric bivalent VLPs (cbVLPs) co-displaying hemagglutinin (HA) and neuraminidase (NA) of H9N2 and H3N2 viruses with the Gag protein of bovine immunodeficiency virus (BIV) as the inner core using the Bac-to-Bac baculovirus expression system. The results showed that a single immunization of chickens with 40µg/0.3mL cbVLPs elicited an effective immune response and provided complete protection against H9N2 and H3N2 viruses. More importantly, cbVLPs with accompanying serological assays can successfully accomplish the strategy of differentiating infected animals from vaccinated animals (DIVA), making virus surveillance easier. Therefore, this cbVLP vaccine candidate would be a promising alternative to conventional vaccines, showing great potential for commercial development.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Antivirais , Bovinos , Galinhas , Vírus da Influenza A Subtipo H3N2 , Vacinação/veterinária , Vacinas de Produtos Inativados
9.
J Virol Methods ; 300: 114387, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34848281

RESUMO

The H1N1 subtype influenza viruses (H1N1) have been causing persistent epidemics in human, swine and poultry populations since 1918. This subtype has evolved into four relatively stable genetic lineages, including classical swine influenza virus lineage, seasonal human influenza virus lineage, avian influenza virus lineage and Eurasian avian-like swine influenza virus lineage. In this study, four pairs of primers, based on the relatively conserved HA nucleotide regions of each H1N1 genetic lineage, were designed to establish a SYBR Green-based real-time quantitative RT-PCR (qPCR) assay to differentiate between the H1N1 genetic lineages. The results of qPCR assay showed that the lineage-specific primers designed for each H1N1 lineage were intra-lineage-specific, without mismatch of inter-lineage or inter-subtype and there appeared specific amplification curves when the concentrations of H1N1 plasmids were greater than or equal to 1.0 × 101 copies/reaction. Thus, this qPCR assay can specifically differentiate between the four lineages of H1N1 with a good specificity and sensitivity, which would assist in recognizing the infection and epidemic status of different H1N1 genetic lineages.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Benzotiazóis , Diaminas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Quinolinas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Suínos
10.
Vet Res Commun ; 46(1): 159-168, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34580815

RESUMO

Avian orthoavulavirus 13 (AOAV-13), formerly known as Avian paramyxovirus 13 (APMV-13), is found scatteredly in wild birds around the world. Although four complete genome sequences of AOAV-13 had been identified since the first discovery in Japan in 2003, the information available on the genetic variation and biological characteristics of AOAV-13 is still limited. In the present study, we isolated six AOAV-13 strains from fecal samples of wild migratory waterfowls during annual (2014-2018) viral surveillance of wild bird populations from wetland and domestic poultry of live bird markets (LBMs) in China. The phylogenetic analyses based on the HN and F genes showed that they had very close relationship and the molecular clock estimations showed a low evolutionary rate of AOAV-13. However, Bean goose/Hubei/V97-1/2015 is 1953 nt in size (ORF, 1, 776 nt), which is a unique size and longer than other reported AOAV-13 strains. Additionally, four repeats of conserved sequences "AAAAAT" was presented in the 5'-end trailer region of Swan goose/Hubei/VI49-1/2016, which is unprecedented in the AOAV-13. These findings highlight the importance of continuous monitoring the specific species of APMVs.


Assuntos
Infecções por Avulavirus , Avulavirus , Doenças das Aves Domésticas , Animais , Infecções por Avulavirus/veterinária , Galinhas , Filogenia
11.
Microb Pathog ; 157: 104885, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33991641

RESUMO

To prevent and control H3N8 subtype equine influenza, we prepared virus-like particles (VLPs) comprising the HA, NA and M1 proteins of H3N8 equine influenza virus (EIV) through the insect cell-baculovirus expression system. The results of Western blot and hemagglutination analyses demonstrated that the constructed VLPs comprising HA, NA and M1 proteins have good hemagglutination activity. Immunoelectron microscope revealed that the VLPs share similar morphology and structure with natural virus particles. The hyperimmune serum from horses immunized with the VLPs were injected into mice by means of artificial passive immunization and then challenge, or challenge following by injecting hyperimmune serum. The results showed that the equine hyperimmune serum has good preventive and therapeutic efficacy against the infection of H3N8 EIV. The study provides a technical foundation for the development of H3N8 EIV VLP vaccine.


Assuntos
Doenças dos Cavalos , Vírus da Influenza A Subtipo H3N8 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Antivirais , Doenças dos Cavalos/prevenção & controle , Cavalos , Vírus da Influenza A Subtipo H3N8/genética , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária
12.
Emerg Microbes Infect ; 10(1): 822-832, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33866955

RESUMO

The enzootic and zoonotic nature of H9N2 avian influenza viruses poses a persistent threat to the global poultry industry and public health. In particular, the emerging sublineage h9.4.2.5 of H9N2 viruses has drawn great attention. In this study, we determined the effects of the flexibility at residues 226 and 227 in the hemagglutinin on the receptor avidity and immune evasion of H9N2 viruses. The solid-phase direct binding assay showed that residue 226 plays a core role in the receptor preference of H9N2 viruses, while residue 227 affects the preference of the virus for a receptor. Consequently, each of these two successive residues can modulate the receptor avidity of H9N2 viruses and influence their potential of zoonotic infection. The antigenic map based on the cross-hemagglutination inhibition (HI) titers revealed that amino acid substitutions at positions 226 or 227 appear to be involved in antigenic drift, potentially resulting in the emergence of H9N2 immune evasion mutants. Further analysis suggested that increased receptor avidity facilitated by residue 226Q or 227M resulted in a reduction in the HI titer. Among the four naturally-occurring amino acid combinations comprising QQ, MQ, LQ, and LM, the number of viruses with LM accounted for 79.64% of the sublineage h9.4.2.5 and the rescued virus with LM exhibited absolute advantages of in vitro and in vivo replication and transmission. Collectively, these data demonstrate that residues 226 and 227 are under selective pressure and their synergistic regulation of receptor avidity and antigenicity is related to the evolution of circulating H9N2 viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Galinhas , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Evasão da Resposta Imune , Vírus da Influenza A Subtipo H9N2/química , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/genética , Influenza Aviária/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Domínios Proteicos , Receptores Virais/genética , Receptores Virais/imunologia
15.
J Vet Diagn Invest ; 32(5): 633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32909533
17.
J Vet Sci ; 21(2): e19, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32233128

RESUMO

Given that the current Newcastle disease virus (NDV) infection in wild birds poses the threat to poultry, surveillance of Newcastle disease in captive wild birds was carried out in Jilin, China in 2018. Here, an NDV strain obtained from toco toucan was firstly characterized. The results showed that the F gene of the NDV isolate Toucan/China/3/2018 is classified as genotype II in class II. Sequence analysis of the F0 cleavage site was 113RQGR/L117, which supports the result of the intracerebral pathogenicity index assay indicating classification of the isolate as low-pathogenicity. Experimental infection demonstrated that Toucan/China/3/2018 can effectively replicate and transmit among chickens. To our knowledge, this is the first report on genetically and pathogenically characterizing NDV strain isolated from toucan, which enriches the epidemiological information of NDV in wild birds.


Assuntos
Aves , Genótipo , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Animais , Animais Selvagens , Galinhas , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/fisiologia , Doenças das Aves Domésticas/virologia , Análise de Sequência de RNA/veterinária
18.
Microb Pathog ; 139: 103831, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31682996

RESUMO

Newcastle disease (ND) is a serious avian infectious disease, causing severe economic loss worldwide. Its prevention depends on comprehensive vaccination scheme against Newcastle disease virus (NDV). However, current vaccine strains are of different genotypes with prevalent circulating strains (genotype VII), with significant genetic distance. Our team previously generated a genotype matched attenuated NDV strain (rmNA-1). In this study, its safety and immunization efficacy were evaluated. Its lentogenic characteristic was stable for 25 generations in embryonated chicken eggs and for six generations in SPF chickens. Overdosed administration did not cause any clinical signs or pathogenic changes in chickens. As to its immunization effect, rmNA-1 stimulated a comparable serum NDV specific antibody level to a LaSota (genotype II) strain based commercial vaccine, and provided full protection against virulent genotype VII strain challenge, with significantly reduced virus shedding period.


Assuntos
Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Vacinação , Animais , Anticorpos Antivirais/sangue , Galinhas/imunologia , Galinhas/virologia , Genótipo , Testes de Sensibilidade Microbiana , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Vacinas Virais/imunologia , Eliminação de Partículas Virais
19.
Vaccine ; 37(3): 444-451, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30545716

RESUMO

Newcastle disease (ND) is one of the most severe avian infectious disease inflicting a great loss on poultry industry worldwide. The control of ND relies on proper vaccination strategies. The vaccine strains of Newcastle disease virus (NDV) mainly belong to genotype I, II or III, which cannot fully prohibit virus shedding against the prevalent genotype VII virulent strain attack. To develop a safe, genotype matched vaccine candidate, we employed a bac-to-bac expression system and constructed a genotype VII NDV strain based virus-like particles (NDV VLPs). It was constructed with NDV M protein as the skeleton, and protective antigen F and HN proteins displayed on the surface. The NDV VLPs exhibited a similar appearance to the live NDV particles, but with denser F and HN proteins displayed on the surface. The immunization assay indicated that NDV VLPs stimulated a longer protection period, less tissue virus loading and shorter virus shedding period than the commercialized LaSota-formulated vaccine when challenged with genotype VII NDV strain. These results proposed the potential role of NDV VLPs as an alternative to current live genotype unmatched vaccine for the control and eliminate NDV in the avian flocks.


Assuntos
Doença de Newcastle/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia , Carga Viral , Vacinas Virais/imunologia , Eliminação de Partículas Virais , Animais , Anticorpos Antivirais/imunologia , Galinhas , Genótipo , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/virologia , Vacinação , Vacinas Atenuadas/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
20.
Microb Pathog ; 126: 109-115, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30391534

RESUMO

The 3' and 5' terminal regions of Newcastle disease virus (NDV) genome are cis-acting regulatory elements involved in replication, transcription, and packaging of genomic and anti-genomic viral RNA. There are 6 different nucleotides (nts) at the 3' and 34 different nts at the 5' end of genome in the velogenic NA-1 strain and lentogenic LaSota strain, sharing 90.00% and 70.18% identity, respectively. We investigated the roles of 3' and 5' terminus in the NA-1 strain in viral replication, virulence and pathogenicity. Three NA-1 strain-based recombinant viruses (rNA-L, rNA-T, and rNA-LT) were generated using reverse genetics by either replacing the 3' leader or 5' trailer sequence of NA-1 strain or both with the corresponding sequences of the LaSota strain. Viral replication kinetics and pathogenicity of rNA-L and rNA-T were indistinguishable to that of the parental NA-1 strain, demonstrating that individual replacement or 3' or 5' terminal sequences had little influence. However, the synchronal replacement of both 3' and 5' terminal sequences resulted in decreased viral plaque size, reduced virulence and weaker pathogenicity in 2-week-old chickens. Therefore, our results suggest that the 3' and 5' terminal sequences of NDV genome could only influence the viral virulence when worked collaboratively, while separate replacement would not alter its biological characteristics.


Assuntos
Sequência de Bases/genética , Genes Virais/genética , Vírus da Doença de Newcastle/genética , Fatores de Virulência/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Animais , Linhagem Celular , Galinhas/virologia , Clonagem Molecular , DNA Viral/genética , Modelos Animais de Doenças , Genoma Viral , Cinética , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/crescimento & desenvolvimento , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carga Viral , Virulência/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA