Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(12): 124504, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379980

RESUMO

A multi-beam ultra-high vacuum apparatus is presented. In this article, we describe the design and construction of a new laboratory astrophysics experiment-VErs de NoUvelles Synthèses (VENUS)-that recreates the solid-state non-energetic formation conditions of complex organic molecules in dark clouds and circumstellar environments. The novel implementation of four operational differentially pumped beam lines will be used to determine the feasibility and the rates for the various reactions that contribute to formation of molecules containing more than six atoms. Data are collected by means of Fourier transform infrared spectroscopy and quadrupole mass spectrometry. The gold-coated sample holder reaches temperatures between 7 K and 400 K. The apparatus was carefully calibrated and the acquisition system was developed to ensure that experimental parameters are recorded as accurately as possible. A great effort has been made to have the beam lines converge toward the sample. Experiments have been developed to check the beam alignment using reacting systems of neutral species (NH3 and H2CO). Preliminary original results were obtained for the {NO + H} system, which shows that chemistry occurs only in the very first outer layer of the deposited species, that is, the chemical layer and the physical layer coincide. This article illustrates the characteristics, performance, and future potential of the new apparatus in view of the forthcoming launch of the James Webb Space Telescope. We show that VENUS will have a major impact through its contributions to surface science and astrochemistry.

2.
Phys Chem Chem Phys ; 16(18): 8257-69, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24671412

RESUMO

The role of nitrogen and oxygen chemistry in the interstellar medium is still rather poorly understood. Nitric oxide, NO, has been proposed as an important precursor in the formation of larger N- and O-bearing species, such as hydroxylamine, NH2OH, and nitrogen oxides, NO2 and N2O. The topic of this study is the solid state consumption of NO via oxygenation and the formation of NO2 and other nitrogen oxides (ONNO2 and N2O4) under conditions close to those encountered on icy grains in quiescent interstellar clouds. In our experiments nitric oxide and oxygen allotropes (O, O2, and O3) or N atoms are co-deposited under ultra-high vacuum conditions on different substrates (silicate, graphite, compact ASW ice, and gold) at temperatures ranging between 10 and 35 K. Reaction products are monitored via Fourier Transform Reflection Absorption Infrared Spectroscopy (FT-RAIRS) and Temperature Programmed Desorption (TPD) using mass spectrometry. We find that NO2 is efficiently formed in NO + O/O2/O3/N solid surface reactions. These are essentially barrier free and offer a pathway for the formation of NO2 in space. Nitrogen dioxide, however, has not been astronomically detected, contradicting the efficient reaction channel found here. This is likely due to other pathways, including regular hydrogenation reactions, as discussed separately in part II of this study.

3.
Phys Chem Chem Phys ; 16(18): 8270-82, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24671439

RESUMO

Nitrogen oxides are considered to be important astrochemical precursors of complex species and prebiotics. However, apart from the hydrogenation of solid NO that leads to the surface formation of hydroxylamine, little is known about the full solid state reaction network involving both nitrogen and oxygen. Our study is divided into two papers, hereby called Part I and Part II. In the accompanying paper, we investigate the surface reactions NO + O/O2/O3 and NO + N with a focus on the formation of NO2 ice. Here, we complement this study by measurements of the surface destruction of solid NO2, e.g., NO2 + H/O/N. Experiments are performed in two separate ultra-high vacuum setups and therefore under different experimental conditions to better constrain the experimental results. Surface reaction products are monitored by means of Fourier Transform Reflection Absorption Infrared Spectroscopy (FT-RAIRS) and Temperature Programmed Desorption (TPD) techniques using mass spectrometry. The surface destruction of solid NO2 leads to the formation of a series of nitrogen oxides such as NO, N2O, N2O3, and N2O4 as well as HNO, NH2OH, and H2O. When NO2 is mixed with an interstellar more relevant apolar (i.e., CO) ice, solid CO2 and HCOOH are also formed due to interactions between different reaction routes. The astrophysical implications of the full nitrogen and oxygen reaction network derived from Parts I and II are discussed.

4.
J Chem Phys ; 140(7): 074705, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24559358

RESUMO

The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O2 and O3 produced via two pathways: O + O and O2 + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O2 + O reactions is ∼150 K/kb. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley-Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O3 formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O3 is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO2 and H2O in the ices.

5.
Phys Rev Lett ; 111(5): 053201, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952395

RESUMO

Any evolving system can change state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at submonolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.

6.
Philos Trans A Math Phys Eng Sci ; 371(1994): 20110586, 2013 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23734051

RESUMO

The structure and bonding of solid acetonitrile (CH3CN) films on amorphous silica are studied, and chemical and physical processes under irradiation with 200 keV protons and 250-400 eV electrons are quantified using transmission infrared spectroscopy, reflection-absorption infrared spectroscopy and temperature-programmed desorption, with the assistance of basic computational chemistry and nuclear materials calculations. The thermal desorption profiles are found to depend strongly on the balance between CH3CN-surface and CH3CN-CH3CN interactions, passing from a sub-monolayer regime (binding energy: 35-50 kJ mol⁻¹) to a multilayer regime (binding energy: 38.2±1.0 kJ mol⁻¹) via a fractional order desorption regime characteristic of islanding as the coverage increases. Calculations using the SRIM code reveal that the effects of the ion irradiation are dominated by electronic stopping of incident protons, and the subsequent generation of secondary electrons. Therefore, ion irradiation and electron irradiation experiments can be quantitatively compared. During ion irradiation of thicker CH3CN films, a cross section for secondary electron-promoted chemical destruction of CH3CN of 4 (±1) × 10⁻¹8 cm² was measured, while electron-promoted desorption was not detected. A significantly higher cross section for electron-promoted desorption of 0.82-3.2 × 10⁻¹5 cm² was measured during electron irradiation of thinner CH3CN films, while no chemical products were detected. The differences between the experimental results can be rationalized by recognizing that chemical reaction is a bulk effect in the CH3CN film, whereas desorption is a surface sensitive process. In thicker films, electron-promoted desorption is expected to occur a rate that is independent of the film thickness; i.e. show zeroth-order kinetics with respect to the surface concentration.


Assuntos
Acetonitrilas/química , Poeira Cósmica/análise , Elétrons , Íons , Modelos Químicos , Modelos Moleculares , Dióxido de Silício/química , Acetonitrilas/efeitos da radiação , Sítios de Ligação , Conformação Molecular/efeitos da radiação , Doses de Radiação
7.
J Hazard Mater ; 261: 733-45, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23583067

RESUMO

The current poor predictability of end points associated with the bioremediation of polycyclic aromatic hydrocarbons (PAHs) is a large limitation when evaluating its viability for treating contaminated soils and sediments. However, we have seen a wide range of innovations in recent years, such as an the improved use of surfactants, the chemotactic mobilization of bacterial inoculants, the selective biostimulation at pollutant interfaces, rhizoremediation and electrobioremediation, which increase the bioavailability of PAHs but do not necessarily increase the risk to the environment. The integration of these strategies into practical remediation protocols would be beneficial to the bioremediation industry, as well as improve the quality of the environment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Medição de Risco
8.
J Chem Phys ; 137(23): 234706, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23267497

RESUMO

The formation of the first monolayer of water molecules on bare dust grains is of primary importance to understand the growth of the icy mantles that cover dust in the interstellar medium. In this work, we explore experimentally the formation of water molecules from O(2) + D reaction on bare silicate surfaces that simulates the grains present in the diffuse interstellar clouds at visual extinctions (A(V) < 3 mag). For comparison, we also study the formation of water molecules on surfaces covered with amorphous water ice representing the dense clouds (A(V) ≥ 3 mag). Our studies focus on the formation of water molecules in the sub-monolayer and monolayer regimes using reflection absorption infrared spectroscopy and temperature-programmed desorption techniques. We provide the fractions of the products, such as D(2)O and D(2)O(2) molecules formed on three astrophysically relevant surfaces held at 10 K (amorphous olivine-type silicate, porous amorphous water ice, and nonporous amorphous water ice). Our results showed that the formation of D(2)O molecules occurs with an efficiency of about 55%-60% on nonporous amorphous water ice and about 18% on bare silicate grains surfaces. We explain the low efficiency of D(2)O water formation on the silicate surfaces by the desorption upon formation of certain products once the reaction occurs between O(2) and D atoms on the surface. A kinetic model taking into account the chemical desorption of newly formed water supports our conclusions.

9.
J Chem Phys ; 137(5): 054713, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22894377

RESUMO

Dust grains in the interstellar medium are known to serve as the first chemical laboratory where the rich inventory of interstellar molecules are synthesized. Here we present a study of the formation of hydroxylamine--NH(2)OH--via the non-energetic route NO + H (D) on crystalline H(2)O and amorphous silicate under conditions relevant to interstellar dense clouds. Formation of nitrous oxide (N(2)O) and water (H(2)O, D(2)O) is also observed and the reaction network is discussed. Hydroxylamine and water results are detected in temperature-programmed desorption (TPD) experiments, while N(2)O is detected by both reflection-absorption IR spectroscopy and TPD techniques. The solid state NO + H reaction channel proves to be a very efficient pathway to NH(2)OH formation in space and may be a potential starting point for prebiotic species in dark interstellar clouds. The present findings are an important step forward in understanding the inclusion of interstellar nitrogen into a non-volatile aminated species since NH(2)OH provides a solid state nitrogen reservoir along the whole evolutionary process of interstellar ices from dark clouds to planetary systems.

10.
Phys Chem Chem Phys ; 13(6): 2172-8, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21113527

RESUMO

Nuclear spin conversion (NSC) of ortho- to para-H(2) and para- to ortho-D(2) has been investigated on an amorphous solid water (ASW) surface at 10 K, in the presence of co-adsorbed O(2). The dynamics of the nuclear spin conversion could be revealed by combination of resonance enhanced multiphoton ionization spectroscopy (REMPI) with temperature programmed desorption (TPD) experiments. The conversion rates are consistent with a diffusion of molecular hydrogen inducing a nuclear spin conversion enhanced in the vicinity of molecular oxygen. The conversion times were found to increase with decreasing O(2) and H(2) coverage. Finally, on oxygen free ASW surface, the extremely long conversion characteristic times measured showed that such surface is not an efficient catalyst for NSC, in contradiction with hypothesis commonly made for interstellar medium.

11.
J Phys Chem A ; 111(49): 12611-9, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17988107

RESUMO

The study of the formation of molecular hydrogen on low-temperature surfaces is of interest both because it enables the exploration of elementary steps in the heterogeneous catalysis of a simple molecule and because of its applications in astrochemistry. Here, we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments, beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations, and the energy barriers of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results are used in order to evaluate the formation rate of H2 on dust grains under the actual conditions present in interstellar clouds. It is found that, under typical conditions in diffuse interstellar clouds, amorphous silicate grains are efficient catalysts of H2 formation when the grain temperatures are between 9 and 14 K. This temperature window is within the typical range of grain temperatures in diffuse clouds. It is thus concluded that amorphous silicates are good candidates to be efficient catalysts of H2 formation in diffuse clouds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA