Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 6097, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414679

RESUMO

Meteorological-tsunami-like (or meteotsunami-like) periodic oscillation was muographically detected with the Tokyo-Bay Seafloor Hyper-Kilometric Submarine Deep Detector (TS-HKMSDD) deployed in the underwater highway called the Trans-Tokyo Bay Expressway or Tokyo Bay Aqua-Line (TBAL). It was detected right after the arrival of the 2021 Typhoon-16 that passed through the region 400 km south of the bay. The measured oscillation period and decay time were respectively 3 h and 10 h. These measurements were found to be consistent with previous tide gauge measurements. Meteotsunamis are known to take place in bays and lakes, and the temporal and spatial characteristics of meteotsunamis are similar to seismic tsunamis. However, their generation and propagation mechanisms are not well understood. The current result indicates that a combination of muography and trans-bay or trans-lake underwater tunnels will offer an additional tool to measure meteotsunamis at locations where tide gauges are unavailable.


Assuntos
Baías , Tsunamis , Monitoramento Ambiental , Tóquio
3.
Sci Rep ; 11(1): 19485, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593861

RESUMO

Tidal measurements are of great significance since they may provide us with essential data to apply towards protection of coastal communities and sea traffic. Currently, tide gauge stations and laser altimetry are commonly used for these measurements. On the other hand, muography sensors can be located underneath the seafloor inside an undersea tunnel where electric and telecommunication infrastructures are more readily available. In this work, the world's first under-seafloor particle detector array called the Tokyo-bay Seafloor Hyper-Kilometric Submarine Deep Detector (TS-HKMSDD) was deployed underneath the Tokyo-Bay seafloor for conducting submarine muography. The resultant 80-day consecutive time-sequential muographic data were converted to the tidal levels based on the parameters determined from the first-day astronomical tide height (ATH) data. The standard deviation between ATH and muographic results for the rest of a 79-day measurement period was 12.85 cm. We anticipate that if the length of the TS-HKMSDD is extended from 100 m to a full-scale as large as 9.6 km to provide continuous tidal information along the tunnel, this muography application will become an established standard, demonstrating its effectiveness as practical tide monitor for this heavy traffic waterway in Tokyo and in other important sea traffic areas worldwide.

4.
PLoS One ; 8(7): e67523, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874425

RESUMO

The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.


Assuntos
Eutrofização/fisiologia , Fluorescência , Oceanos e Mares , Animais , Contagem de Células , Medições Luminescentes/métodos , Região do Mediterrâneo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA