Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895237

RESUMO

Cancer remains a leading cause of mortality globally. Recent improvements in survival have been facilitated by the development of less toxic immunotherapies; however, identifying targets for immunotherapies remains a challenge in the field. To address this challenge, we developed IMMUNOTAR, a computational tool that systematically prioritizes and identifies candidate immunotherapeutic targets. IMMUNOTAR integrates user-provided RNA-sequencing or proteomics data with quantitative features extracted from publicly available databases based on predefined optimal immunotherapeutic target criteria and quantitatively prioritizes potential surface protein targets. We demonstrate the utility and flexibility of IMMUNOTAR using three distinct datasets, validating its effectiveness in identifying both known and new potential immunotherapeutic targets within the analyzed cancer phenotypes. Overall, IMMUNOTAR enables the compilation of data from multiple sources into a unified platform, allowing users to simultaneously evaluate surface proteins across diverse criteria. By streamlining target identification, IMMUNOTAR empowers researchers to efficiently allocate resources and accelerate immunotherapy development.

2.
J Natl Cancer Inst ; 116(1): 149-159, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688579

RESUMO

BACKGROUND: Neuroblastoma is an embryonal cancer of the developing sympathetic nervous system. The genetic contribution of rare pathogenic or likely pathogenic germline variants in patients without a family history remains unclear. METHODS: Germline DNA sequencing was performed on 786 neuroblastoma patients. The frequency of rare cancer predisposition gene pathogenic or likely pathogenic variants in patients was compared with 2 cancer-free control cohorts. Matched tumor DNA sequencing was evaluated for second hits, and germline DNA array data from 5585 neuroblastoma patients and 23 505 cancer-free control children were analyzed to identify rare germline copy number variants. Patients with germline pathogenic or likely pathogenic variants were compared with those without to test for association with clinical characteristics, tumor features, and survival. RESULTS: We observed 116 pathogenic or likely pathogenic variants involving 13.9% (109 of 786) of neuroblastoma patients, representing a statistically significant excess burden compared with cancer-free participants (odds ratio [OR] = 1.60, 95% confidence interval [CI] = 1.27 to 2.00). BARD1 harbored the most statistically significant enrichment of pathogenic or likely pathogenic variants (OR = 32.30, 95% CI = 6.44 to 310.35). Rare germline copy number variants disrupting BARD1 were identified in patients but absent in cancer-free participants (OR = 29.47, 95% CI = 1.52 to 570.70). Patients harboring a germline pathogenic or likely pathogenic variant had a worse overall survival compared with those without (P = 8.6 x 10-3). CONCLUSIONS: BARD1 is an important neuroblastoma predisposition gene harboring both common and rare germline pathogenic or likely pathogenic variations. The presence of any germline pathogenic or likely pathogenic variant in a cancer predisposition gene was independently predictive of worse overall survival. As centers move toward paired tumor-normal sequencing at diagnosis, efforts should be made to centralize data and provide an infrastructure to support cooperative longitudinal prospective studies of germline pathogenic variation.


Assuntos
Predisposição Genética para Doença , Neuroblastoma , Criança , Humanos , Estudos Prospectivos , Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Neuroblastoma/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
3.
bioRxiv ; 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106022

RESUMO

Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights: Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.

4.
Cancer Res ; 83(20): 3462-3477, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584517

RESUMO

Long noncoding RNAs (lncRNA) play an important role in gene regulation and contribute to tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we curated RNA sequencing data for 1,044 pediatric leukemia and extracranial solid tumors and integrated paired tumor whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, regulation, and association with cancer. A total of 2,657 lncRNAs were robustly expressed across six pediatric cancers, including 1,142 exhibiting histotype-elevated expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding genes. Application of a multidimensional framework to identify and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis of upstream regulation via cell type-specific transcription factors further implicated distinct histotype-elevated and developmental lncRNAs. Integration of these analyses prioritized lncRNAs for experimental validation, and silencing of TBX2-AS1, the top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming the computational predictions. Taken together, these data provide a comprehensive characterization of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic studies. SIGNIFICANCE: Comprehensive characterization of lncRNAs in pediatric cancer leads to the identification of highly expressed lncRNAs across childhood cancers, annotation of lncRNAs showing histotype-specific elevated expression, and prediction of lncRNA gene regulatory networks.


Assuntos
Leucemia , Neuroblastoma , RNA Longo não Codificante , Adulto , Humanos , Criança , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica , Neuroblastoma/genética , Leucemia/genética , Genômica , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica
5.
medRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747619

RESUMO

Importance: Neuroblastoma accounts for 12% of childhood cancer deaths. The genetic contribution of rare pathogenic germline variation in patients without a family history remains unclear. Objective: To define the prevalence, spectrum, and clinical significance of pathogenic germline variation in cancer predisposition genes (CPGs) in neuroblastoma patients. Design Setting and Participants: Germline DNA sequencing was performed on the peripheral blood from 786 neuroblastoma patients unselected for family history. Rare variants mapping to CPGs were evaluated for pathogenicity and the percentage of cases harboring pathogenic (P) or likely pathogenic (LP) variants was quantified. The frequency of CPG P-LP variants in neuroblastoma cases was compared to two distinct cancer-free control cohorts to assess enrichment. Matched tumor DNA sequencing was evaluated for "second hits" at CPGs and germline DNA array data from 5,585 neuroblastoma cases and 23,505 cancer-free control children was analyzed to identify rare germline copy number variants (CNVs) affecting genes with an excess burden of P-LP variants in neuroblastoma. Neuroblastoma patients with germline P-LP variants were compared to those without P-LP variants to test for association with clinical characteristics, tumor features, and patient survival. Main Outcomes and Measures: Rare variant prevalence, pathogenicity, enrichment, and association with clinical characteristics, tumor features, and patient survival. Results: We observed 116 P-LP variants in CPGs involving 13.9% (109/786) of patients, representing a significant excess burden of P-LP variants compared to controls (9.1%; P = 5.14 × 10-5, Odds Ratio: 1.60, 95% confidence interval: 1.27-2.00). BARD1 harbored the most significant burden of P-LP variants compared to controls (1.0% vs. 0.03%; P = 8.18 × 10-7; Odds Ratio: 32.30, 95% confidence interval: 6.44-310.35). Rare germline CNVs disrupting BARD1 were also identified in neuroblastoma patients (0.05%) but absent in controls (P = 7.08 × 10-3; Odds Ratio: 29.47, 95% confidence interval: 1.52 - 570.70). Overall, P-LP variants in DNA repair genes in this study were enriched in cases compared to controls (8.1% vs. 5.7%; P = 0.01; Odds Ratio: 1.45, 95% confidence interval: 1.08-1.92). Neuroblastoma patients harboring a germline P-LP variant had a worse overall survival when compared to patients without P-LP variants (P = 8.6 × 10-3), and this remained significant in a multivariate Cox proportional-hazards model (P = 0.01). Conclusions and Relevance: Neuroblastoma patients harboring germline P-LP variants in CPGs have worse overall survival and BARD1 is an important predisposition gene affected by both common and rare pathogenic variation. Germline sequencing should be performed for all neuroblastoma patients at diagnosis to inform genetic counseling and support future longitudinal and mechanistic studies. Patients with a germline P-LP variant should be closely monitored, regardless of risk group assignment.

6.
Genome Res ; 30(9): 1228-1242, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32796005

RESUMO

Neuroblastoma is a malignancy of the developing sympathetic nervous system that accounts for 12% of childhood cancer deaths. Like many childhood cancers, neuroblastoma shows a relative paucity of somatic single-nucleotide variants (SNVs) and small insertions and deletions (indels) compared to adult cancers. Here, we assessed the contribution of somatic structural variation (SV) in neuroblastoma using a combination of whole-genome sequencing (WGS) of tumor-normal pairs (n = 135) and single-nucleotide polymorphism (SNP) genotyping of primary tumors (n = 914). Our study design allowed for orthogonal validation and replication across platforms. SV frequency, type, and localization varied significantly among high-risk tumors. MYCN nonamplified high-risk tumors harbored an increased SV burden overall, including a significant excess of tandem duplication events across the genome. Genes disrupted by SV breakpoints were enriched in neuronal lineages and associated with phenotypes such as autism spectrum disorder (ASD). The postsynaptic adapter protein-coding gene, SHANK2, located on Chromosome 11q13, was disrupted by SVs in 14% of MYCN nonamplified high-risk tumors based on WGS and 10% in the SNP array cohort. Expression of SHANK2 was low across human-derived neuroblastoma cell lines and high-risk neuroblastoma tumors. Forced expression of SHANK2 in neuroblastoma cells resulted in significant growth inhibition (P = 2.6 × 10-2 to 3.4 × 10-5) and accelerated neuronal differentiation following treatment with all-trans retinoic acid (P = 3.1 × 10-13 to 2.4 × 10-30). These data further define the complex landscape of somatic structural variation in neuroblastoma and suggest that events leading to deregulation of neurodevelopmental processes, such as inactivation of SHANK2, are key mediators of tumorigenesis in this childhood cancer.


Assuntos
Genes Supressores de Tumor , Variação Estrutural do Genoma , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Neurogênese/genética , Linhagem Celular Tumoral , Cromotripsia , Estudos de Coortes , Quebras de DNA , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA Neoplásico , RNA-Seq , Medição de Risco , Telomerase/genética , Células Tumorais Cultivadas , Sequenciamento Completo do Genoma
7.
Cancer Res ; 80(12): 2663-2675, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32291317

RESUMO

Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n = 104) and patient-derived xenografts (n = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Linhagem Celular Tumoral , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Lactente , Masculino , Recidiva Local de Neoplasia , Neuroblastoma/mortalidade , Neuroblastoma/patologia , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , RNA-Seq , Telomerase/genética , Telomerase/isolamento & purificação , Sequenciamento Completo do Genoma , Proteína Nuclear Ligada ao X/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Data ; 7(1): 116, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286315

RESUMO

Understanding the aberrant transcriptional landscape of neuroblastoma is necessary to provide insight to the underlying influences of the initiation, progression and persistence of this developmental cancer. Here, we present chromatin immunoprecipitation sequencing (ChIP-Seq) data for the oncogenic transcription factors, MYCN and MYC, as well as regulatory histone marks H3K4me1, H3K4me3, H3K27Ac, and H3K27me3 in ten commonly used human neuroblastoma-derived cell line models. In addition, for all of the profiled cell lines we provide ATAC-Seq as a measure of open chromatin. We validate specificity of global MYCN occupancy in MYCN amplified cell lines and functional redundancy of MYC occupancy in MYCN non-amplified cell lines. Finally, we show with H3K27Ac ChIP-Seq that these cell lines retain expression of key neuroblastoma super-enhancers (SE). We anticipate this dataset, coupled with available transcriptomic profiling on the same cell lines, will enable the discovery of novel gene regulatory mechanisms in neuroblastoma.


Assuntos
Epigenômica , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Linhagem Celular Tumoral , Cromatina/genética , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Histonas/genética , Humanos
9.
PLoS Genet ; 13(5): e1006787, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28545128

RESUMO

Neuroblastoma is a cancer of the developing sympathetic nervous system that most commonly presents in young children and accounts for approximately 12% of pediatric oncology deaths. Here, we report on a genome-wide association study (GWAS) in a discovery cohort or 2,101 cases and 4,202 controls of European ancestry. We identify two new association signals at 3q25 and 4p16 that replicated robustly in multiple independent cohorts comprising 1,163 cases and 4,396 controls (3q25: rs6441201 combined P = 1.2x10-11, Odds Ratio 1.23, 95% CI:1.16-1.31; 4p16: rs3796727 combined P = 1.26x10-12, Odds Ratio 1.30, 95% CI: 1.21-1.40). The 4p16 signal maps within the carboxypeptidase Z (CPZ) gene. The 3q25 signal resides within the arginine/serine-rich coiled-coil 1 (RSRC1) gene and upstream of the myeloid leukemia factor 1 (MLF1) gene. Increased expression of MLF1 was observed in neuroblastoma cells homozygous for the rs6441201 risk allele (P = 0.02), and significant growth inhibition was observed upon depletion of MLF1 (P < 0.0001) in neuroblastoma cells. Taken together, we show that common DNA variants within CPZ at 4p16 and upstream of MLF1 at 3q25 influence neuroblastoma susceptibility and MLF1 likely plays an important role in neuroblastoma tumorigenesis.


Assuntos
Carboxipeptidases/genética , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 4/genética , Neuroblastoma/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Estudos de Casos e Controles , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA , Feminino , Inativação Gênica , Homozigoto , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas/metabolismo
10.
Cancer Cell ; 28(5): 599-609, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26481147

RESUMO

A more complete understanding of aberrant oncogenic signaling in neuroblastoma, a malignancy of the developing sympathetic nervous system, is paramount to improving patient outcomes. Recently, we identified LIN28B as an oncogenic driver in high-risk neuroblastoma. Here, we identify the oncogene RAN as a LIN28B target and show regional gain of chromosome 12q24 as an additional somatic alteration resulting in increased RAN expression. We show that LIN28B influences RAN expression by promoting RAN Binding Protein 2 expression and by directly binding RAN mRNA. Further, we demonstrate a convergence of LIN28B and RAN signaling on Aurora kinase A activity. Collectively, these findings demonstrate that LIN28B-RAN-AURKA signaling drives neuroblastoma oncogenesis, suggesting that this pathway may be amenable to therapeutic targeting.


Assuntos
Aurora Quinase A/genética , Neuroblastoma/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Proteína ran de Ligação ao GTP/genética , Aurora Quinase A/metabolismo , Western Blotting , Carcinogênese/genética , Linhagem Celular Tumoral , Criança , Cromossomos Humanos Par 12/genética , Variações do Número de Cópias de DNA , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína ran de Ligação ao GTP/metabolismo
11.
J Natl Cancer Inst ; 106(4): dju047, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24634504

RESUMO

TP53 is the most frequently mutated gene in human malignancies; however, de novo somatic mutations in childhood embryonal cancers such as neuroblastoma are rare. We report on the analysis of three independent case-control cohorts comprising 10290 individuals and demonstrate that rs78378222 and rs35850753, rare germline variants in linkage disequilibrium that map to the 3' untranslated region (UTR) of TP53 and 5' UTR of the Δ133 isoform of TP53, respectively, are robustly associated with neuroblastoma (rs35850753: odds ratio [OR] = 2.7, 95% confidence interval [CI] = 2.0 to 3.6, P combined = 3.43×10(-12); rs78378222: OR = 2.3, 95% CI = 1.8 to 2.9, P combined = 2.03×10(-11)). All statistical tests were two-sided. These findings add neuroblastoma to the complex repertoire of human cancers influenced by the rs78378222 hypomorphic allele, which impairs proper termination and polyadenylation of TP53 transcripts. Future studies using whole-genome sequencing data are likely to reveal additional rare variants with large effect sizes contributing to neuroblastoma tumorigenesis.


Assuntos
Mutação em Linhagem Germinativa , Desequilíbrio de Ligação , Neuroblastoma/genética , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Predisposição Genética para Doença , Humanos
12.
Mol Cancer Res ; 12(5): 654-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24482365

RESUMO

UNLABELLED: Small cell lung carcinoma (SCLC) is a highly metastatic tumor type with neuroendocrine features and a dismal prognosis. PTEN mutations and PIK3CA activating mutations have been reported in SCLC but the functional relevance of this pathway is unknown. The PTEN/PIK3CA pathway was interrogated using an AdenoCre-driven mouse model of SCLC harboring inactivated Rb and p53. Inactivation of one allele of PTEN in Rb/p53-deleted mice led to accelerated SCLC with frequent metastasis to the liver. In contrast with the high mutation burden reported in human SCLC, exome analyses revealed a low number of protein-altering mutations in mouse SCLC. Inactivation of both alleles of PTEN in the Rb/p53-deleted system led to nonmetastatic adenocarcinoma with neuroendocrine differentiation. This study reveals a critical role for the PTEN/PI3K pathway in both SCLC and lung adenocarcinoma and provides an ideal system to test the phosphoinositide 3-kinase (PI3K) pathway inhibitors as targeted therapy for subsets of patients with SCLC. IMPLICATIONS: The ability of PTEN inactivation to accelerate SCLC in a genetic mouse model suggests that targeting the PTEN pathway is a therapeutic option for a subset of human patients with SCLC. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/early/2014/04/28/1541-7786.MCR-13-0554/F1.large.jpg.


Assuntos
Neoplasias Pulmonares/genética , PTEN Fosfo-Hidrolase/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Modelos Animais de Doenças , Feminino , Genes Supressores de Tumor , Humanos , Neoplasias Pulmonares/enzimologia , Masculino , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Carcinoma de Pequenas Células do Pulmão/enzimologia
13.
J Clin Invest ; 122(5): 1726-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22484813

RESUMO

Retinoblastoma is a pediatric cancer that has served as a paradigm for tumor suppressor gene function. Retinoblastoma is initiated by RB gene mutations, but the subsequent cooperating mutational events leading to tumorigenesis are poorly characterized. We investigated what these additional genomic alterations might be using human retinoblastoma samples and mouse models. Array-based comparative genomic hybridization studies revealed deletions in the CDKN2A locus that include ARF and P16INK4A, both of which encode tumor suppressor proteins, in both human and mouse retinoblastoma. Through mouse genetic analyses, we found that Arf was the critical tumor suppressor gene in the deleted region. In mice, inactivation of one allele of Arf cooperated with Rb and p107 loss to rapidly accelerate retinoblastoma, with frequent loss of heterozygosity (LOH) at the Arf locus. Arf has been reported to exhibit p53-independent tumor suppressor roles in other systems; however, our results showed no additive effect of p53 and Arf coinactivation in promoting retinoblastoma. Moreover, p53 inactivation completely eliminated any selection for Arf LOH. Thus, our data reveal important insights into the p53 pathway in retinoblastoma and show that Arf is a key collaborator with Rb in retinoblastoma suppression.


Assuntos
Fatores de Ribosilação do ADP/genética , Genes do Retinoblastoma , Neoplasias da Retina/genética , Proteína do Retinoblastoma/genética , Retinoblastoma/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Sequência de Bases , Proliferação de Células , Transformação Celular Neoplásica , Hibridização Genômica Comparativa , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Humanos , Perda de Heterozigosidade , Camundongos , Camundongos Knockout , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Deleção de Sequência , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Genes Dev ; 25(16): 1734-45, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21816922

RESUMO

The miR-17~92 cluster is a potent microRNA-encoding oncogene. Here, we show that miR-17~92 synergizes with loss of Rb family members to promote retinoblastoma. We observed miR-17~92 genomic amplifications in murine retinoblastoma and high expression of miR-17~92 in human retinoblastoma. While miR-17~92 was dispensable for mouse retinal development, miR-17~92 overexpression, together with deletion of Rb and p107, led to rapid emergence of retinoblastoma with frequent metastasis to the brain. miR-17~92 oncogenic function in retinoblastoma was not mediated by a miR-19/PTEN axis toward apoptosis suppression, as found in lymphoma/leukemia models. Instead, miR-17~92 increased the proliferative capacity of Rb/p107-deficient retinal cells. We found that deletion of Rb family members led to compensatory up-regulation of the cyclin-dependent kinase inhibitor p21Cip1. miR-17~92 overexpression counteracted p21Cip1 up-regulation, promoted proliferation, and drove retinoblastoma formation. These results demonstrate that the oncogenic determinants of miR-17~92 are context-specific and provide new insights into miR-17~92 function as an RB-collaborating gene in cancer.


Assuntos
MicroRNAs/genética , Mutação , Proteína do Retinoblastoma/genética , Retinoblastoma/genética , Transdução de Sinais/genética , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos Antissenso/genética , Gravidez , Retina/embriologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo
15.
EMBO J ; 26(3): 784-94, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17235288

RESUMO

Human retinoblastoma is a pediatric cancer initiated by RB gene mutations in the developing retina. We have examined the origins and progression of retinoblastoma in mouse models of the disease. Retina-specific inactivation of Rb on a p130-/- genetic background led to bilateral retinoblastoma with rapid kinetics, whereas on a p107-/- background Rb mutation caused predominantly unilateral tumors that arose with delayed kinetics and incomplete penetrance. In both models, retinoblastomas arose from cells at the extreme periphery of the murine retina. Furthermore, late retinoblastomas progressed to invade the brain and metastasized to the cervical lymph nodes. Metastatic tumors lacking Rb and p130 exhibited chromosomal changes revealed by representational oligonucleotide microarray analysis including high-level amplification of the N-myc oncogene. N-myc was found amplified in three of 16 metastatic retinoblastomas lacking Rb and p130 as well as in retinoblastomas lacking Rb and p107. N-myc amplification ranged from 6- to 400-fold and correlated with high N-myc-expression levels. These murine models closely resemble human retinoblastoma in their progression and secondary genetic changes, making them ideal tools for further dissection of steps to tumorigenesis and for testing novel therapies.


Assuntos
Modelos Animais de Doenças , Metástase Neoplásica/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína do Retinoblastoma/genética , Retinoblastoma/genética , Retinoblastoma/fisiopatologia , Animais , Northern Blotting , Southern Blotting , Progressão da Doença , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-myc/genética , Proteína p130 Retinoblastoma-Like/genética , beta-Galactosidase
16.
Proc Natl Acad Sci U S A ; 103(40): 14813-8, 2006 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17003133

RESUMO

Fertility of spermatozoa depends on maintenance of the mitochondrial transmembrane potential (Deltapsi(m)), which is generated by the electron-transport chain and regulated by an oxidation-reduction equilibrium of reactive oxygen intermediates, pyridine nucleotides, and glutathione (GSH). Here, we report that male mice lacking transaldolase (TAL)(-/-) are sterile because of defective forward motility. TAL(-/-) spermatozoa show loss of Deltapsi(m) and mitochondrial membrane integrity because of diminished NADPH, NADH, and GSH. Mitochondria constitute major Ca(2+) stores; thus, diminished mitochondrial mass accounts for reduced Ca(2+) fluxing, defective forward motility, and infertility. Reduced forward progression of TAL-deficient spermatozoa is associated with diminished mitochondrial reactive oxygen intermediate production and Ca(2+) levels, intracellular acidosis, and compensatory down-regulation of carbonic anhydrase IV and overexpression of CD38 and gamma-glutamyl transferase. Microarray analyses of gene expression in the testis, caput, and cauda epididymidis of TAL(+/+), TAL(+/-), and TAL(-/-) littermates confirmed a dominant impact of TAL deficiency on late stages of sperm-cell development, affecting the electron-transport chain and GSH metabolism. Stimulation of de novo GSH synthesis by oral N-acetyl-cysteine normalized the low fertility rate of TAL(+/-) males without affecting the sterility of TAL(-/-) males. Whereas TAL(-/-) sperm failed to fertilize TAL(+/+) oocytes in vitro, sterility of TAL(-/-) sperm was circumvented by intracytoplasmic sperm injection, indicating that TAL deficiency influenced the structure and function of mitochondria without compromising the nucleus and DNA integrity. Collectively, these data reveal an essential role of TAL in sperm-cell mitochondrial function and, thus, male fertility.


Assuntos
Fertilidade/fisiologia , Membranas Mitocondriais/enzimologia , Espermatozoides/enzimologia , Espermatozoides/fisiologia , Transaldolase/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Epididimo/enzimologia , Epididimo/ultraestrutura , Expressão Gênica , Inativação Gênica , Heterozigoto , Homozigoto , Infertilidade Masculina , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Recombinação Genética , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia , Espermatozoides/ultraestrutura , Fosfatos Açúcares/metabolismo , Transaldolase/deficiência
17.
Org Biomol Chem ; 4(14): 2777-84, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16826303

RESUMO

Many carbenoid cyclopropanation reactions promoted by chiral catalysts give product mixtures reflecting impressive diastereo- and enantioselectivities. Few provide a single chiral product efficiently. This limitation has been overcome in cyclopropanations of styrene and isotopically labeled styrenes with alpha-diazoacetates. Convenient syntheses on a 20 g scale of each of four chiral isotopically labeled (1R)-menthyl (1S,2S)-2-phenylcyclopropanecarboxylates (the 1-d-3-(13)C, 1,(3S)-d2, 1,2,(3S)-d3, and 1,3,3-d3 isotopomers) of better than 99% ee have been realized.


Assuntos
Ácidos Carboxílicos/química , Ciclopropanos/química , Ciclopropanos/síntese química , Isótopos de Carbono , Catálise , Cobre/química , Estrutura Molecular , Estereoisomerismo , Estireno/química
18.
J Mass Spectrom ; 41(4): 463-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16470722

RESUMO

Transaldolase (TAL) is a key enzyme of the pentose phosphate pathway (PPP). TAL deficiency is a newly recognized cause of liver cirrhosis. We have developed an ion-pair LC separation combined with negative ion electrospray MS/MS detection method to assess PPP metabolites in urine samples from TAL-deficient mice. Sedoheptulose 7-phosphate (S7P), C5-polyols D-arabitol and D-ribitol, and 6-phosphogluconate (6PG) levels were markedly increased in urine of TAL-deficient mice with respect to those of wild-type and heterozygote littermates. The detection limits of S7P, D-arabitol, and 6PG were 0.15 +/- 0.015 pmol, 3.5 +/- 0.41 pmol, and 0.61 +/- 0.055 pmol, respectively. The limit of quantitation was 0.4 +/- 0.024 nmol/ml for S7P, 1.6 +/- 0.11 nmol/ml for 6PG and 10 +/- 0.7 nmol/ml for D-arabitol. Additional metabolites, hexose 6-phosphates (m/z 259), D-ribose 5-phosphate and D-xylulose 5-phosphate (m/z 229), D-fructose 1,6-diphosphate (m/z 339), C6-polyols (m/z 181) and GSSG (m/z 611), that have been positively identified in mouse urine, showed similar levels in control and TAL-deficient mice.


Assuntos
Eletrocromatografia Capilar/métodos , Espectrometria de Massas/métodos , Via de Pentose Fosfato , Fosfatos Açúcares/urina , Transaldolase/química , Transaldolase/metabolismo , Urinálise/métodos , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA