Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ACS Nano ; 17(4): 3750-3764, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36780291

RESUMO

Effective therapeutic approaches to overcome the heterogeneous pro-inflammatory and inhibitory extracellular matrix (ECM) microenvironment are urgently needed to achieve robust structural and functional repair of severely wounded fibrocartilaginous tissues. Herein we developed a dynamic and multifunctional nanohybrid peptide hydrogel (NHPH) through hierarchical self-assembly of peptide amphiphile modified with biodegradable two-dimensional nanomaterials with enzyme-like functions. NHPH is not only injectable, biocompatible, and biodegradable but also therapeutic by catalyzing the scavenging of pro-inflammatory reactive oxygen species and promoting ECM remodeling. In addition, our NHPH method facilitated the structural and functional recovery of the intervertebral disc (IVD) after severe injuries by delivering pro-regenerative cytokines in a sustained manner, effectively suppressing immune responses and eventually restoring the regenerative microenvironment of the ECM. In parallel, the NHPH-enhanced nucleus pulposus cell differentiation and pain reduction in a rat nucleotomy model further validated the therapeutic potential of NHPH. Collectively, our advanced nanoscaffold technology will provide an alternative approach for the effective treatment of IVD degeneration as well as other fibrocartilaginous tissue injuries.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Disco Intervertebral/fisiologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/química , Regeneração
3.
Adv Drug Deliv Rev ; 192: 114636, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481291

RESUMO

Various types of inorganic nanomaterials are capable of diagnostic biomarker detection and the therapeutic delivery of a disease or inflammatory modulating agent. Those multi-functional nanomaterials have been utilized to treat neurodegenerative diseases and central nervous system (CNS) injuries in an effective and personalized manner. Even though many nanomaterials can deliver a payload and detect a biomarker of interest, only a few studies have yet to fully utilize this combined strategy to its full potential. Combining a nanomaterial's ability to facilitate targeted delivery, promote cellular proliferation and differentiation, and carry a large amount of material with various sensing approaches makes it possible to diagnose a patient selectively and sensitively while offering preventative measures or early disease-modifying strategies. By tuning the properties of an inorganic nanomaterial, the dimensionality, hydrophilicity, size, charge, shape, surface chemistry, and many other chemical and physical parameters, different types of cells in the central nervous system can be monitored, modulated, or further studies to elucidate underlying disease mechanisms. Scientists and clinicians have better understood the underlying processes of pathologies for many neurologically related diseases and injuries by implementing multi-dimensional 0D, 1D, and 2D theragnostic nanomaterials. The incorporation of nanomaterials has allowed scientists to better understand how to detect and treat these conditions at an early stage. To this end, having the multi-modal ability to both sense and treat ailments of the central nervous system can lead to favorable outcomes for patients suffering from such injuries and diseases.


Assuntos
Nanoestruturas , Doenças Neurodegenerativas , Humanos , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Sistema Nervoso Central , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/tratamento farmacológico
4.
Research (Wash D C) ; 2022: 9784273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204248

RESUMO

A systematic investigation of stem cell-derived neural interfaces can facilitate the discovery of the molecular mechanisms behind cell behavior in neurological disorders and accelerate the development of stem cell-based therapies. Nevertheless, high-throughput investigation of the cell-type-specific biophysical cues associated with stem cell-derived neural interfaces continues to be a significant obstacle to overcome. To this end, we developed a combinatorial nanoarray-based method for high-throughput investigation of neural interface micro-/nanostructures (physical cues comprising geometrical, topographical, and mechanical aspects) and the effects of these complex physical cues on stem cell fate decisions. Furthermore, by applying a machine learning (ML)-based analytical approach to a large number of stem cell-derived neural interfaces, we comprehensively mapped stem cell adhesion, differentiation, and proliferation, which allowed for the cell-type-specific design of biomaterials for neural interfacing, including both adult and human-induced pluripotent stem cells (hiPSCs) with varying genetic backgrounds. In short, we successfully demonstrated how an innovative combinatorial nanoarray and ML-based platform technology can aid with the rational design of stem cell-derived neural interfaces, potentially facilitating precision, and personalized tissue engineering applications.

5.
ACS Nano ; 16(4): 5764-5777, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35362957

RESUMO

The detection of nucleic acids and their mutation derivatives is vital for biomedical science and applications. Although many nucleic acid biosensors have been developed, they often require pretreatment processes, such as target amplification and tagging probes to nucleic acids. Moreover, current biosensors typically cannot detect sequence-specific mutations in the targeted nucleic acids. To address the above problems, herein, we developed an electrochemical nanobiosensing system using a phenomenon comprising metal ion intercalation into the targeted mismatched double-stranded nucleic acids and a homogeneous Au nanoporous electrode array (Au NPEA) to obtain (i) sensitive detection of viral RNA without conventional tagging and amplifying processes, (ii) determination of viral mutation occurrence in a simple detection manner, and (iii) multiplexed detection of several RNA targets simultaneously. As a proof-of-concept demonstration, a SARS-CoV-2 viral RNA and its mutation derivative were used in this study. Our developed nanobiosensor exhibited highly sensitive detection of SARS-CoV-2 RNA (∼1 fM detection limit) without tagging and amplifying steps. In addition, a single point mutation of SARS-CoV-2 RNA was detected in a one-step analysis. Furthermore, multiplexed detection of several SARS-CoV-2 RNAs was successfully demonstrated using a single chip with four combinatorial NPEAs generated by a 3D printing technique. Collectively, our developed nanobiosensor provides a promising platform technology capable of detecting various nucleic acids and their mutation derivatives in highly sensitive, simple, and time-effective manners for point-of-care biosensing.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoporos , Ácidos Nucleicos , Humanos , RNA Viral/genética , Técnicas Eletroquímicas/métodos , Nucleotídeos , SARS-CoV-2 , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
6.
ACS Nano ; 16(4): 5577-5586, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35301847

RESUMO

Biophysical cues, such as nanotopographies of extracellular matrix (ECM), are key cell regulators for direct cell reprogramming. Therefore, high-throughput methods capable of systematically screening a wide range of biophysical cue-regulated cell reprogramming are increasingly needed for tissue engineering and regenerative medicine. Here, we report the development of a dynamic laser interference lithography (DIL) to generate large-scale combinatorial biophysical cue (CBC) arrays with diverse micro/nanostructures at higher complexities than most current arrays. Using CBC arrays, a high-throughput cell mapping method is further demonstrated for the systematic investigation of biophysical cue-mediated direct cell reprogramming. This CBC array-based high-throughput cell screening approach facilitates the rapid identification of unconventional hierarchical nanopatterns that induce the direct reprogramming of human fibroblasts into neurons through epigenetic modulation mechanisms. In this way, we successfully demonstrate DIL for generating highly complex CBC arrays and establish CBC array-based cell screening as a valuable strategy for systematically investigating the role of biophysical cues in cell reprogramming.


Assuntos
Reprogramação Celular , Sinais (Psicologia) , Humanos , Engenharia Tecidual , Medicina Regenerativa , Biofísica
7.
Adv Mater ; 32(43): e2002578, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32893402

RESUMO

Central nervous system (CNS) injuries are often debilitating, and most currently have no cure. This is due to the formation of a neuroinhibitory microenvironment at injury sites, which includes neuroinflammatory signaling and non-permissive extracellular matrix (ECM) components. To address this challenge, a viscous interfacial self-assembly approach, to generate a bioinspired hybrid 3D porous nanoscaffold platform for delivering anti-inflammatory molecules and establish a favorable 3D-ECM environment for the effective suppression of the neuroinhibitory microenvironment, is developed. By tailoring the structural and biochemical properties of the 3D porous nanoscaffold, enhanced axonal growth from the dual-targeting therapeutic strategy in a human induced pluripotent stem cell (hiPSC)-based in vitro model of neuroinflammation is demonstrated. Moreover, nanoscaffold-based approaches promote significant axonal growth and functional recovery in vivo in a spinal cord injury model through a unique mechanism of anti-inflammation-based fibrotic scar reduction. Given the critical role of neuroinflammation and ECM microenvironments in neuroinhibitory signaling, the developed nanobiomaterial-based therapeutic intervention may pave a new road for treating CNS injuries.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Microambiente Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Nanoestruturas/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Materiais Biomiméticos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Porosidade , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA