Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 91: 104577, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37068348

RESUMO

BACKGROUND: Hyperthermia is a well-accepted cancer therapy. Microwaves provide a very precise, targeted means of hyperthermia and are currently used to treat plantar warts caused by cutaneous-infective human papillomaviruses (HPVs). Other HPV genotypes infecting the anogenital mucosa cause genital warts or preneoplastic lesions or cervical cancer. Effective, non-ablative therapies for these morbid HPV-associated lesions are lacking. METHODS: The molecular consequences of microwave treatment were investigated in in vitro cultured three-dimensional HPV-positive cervical tumour tissues, and tissues formed from HPV-infected normal immortalised keratinocytes. Microwave energy delivery to tissues was quantified. Quantitative reverse transcriptase PCR was used to quantify mRNA expression. Immunohistochemistry and fluorescence immunostaining was used to assess protein expression. FINDINGS: Microwave energy deposition induced sustained, localised cell death at the treatment site. There was a downregulation in levels of HPV oncoproteins E6 and E7 alongside a reduction in cellular growth/proliferation and induction of apoptosis/autophagy. HSP70 expression confirmed hyperthermia, concomitant with induction of translational stress. INTERPRETATION: The data suggest that microwave treatment inhibits tumour cell proliferation and allows the natural apoptosis of HPV-infected cells to resume. Precision microwave delivery presents a potential new treatment for treating HPV-positive anogenital precancerous lesions and cancers. FUNDING: Funding was through an Innovate UK Biomedical Catalyst grant (ID# 92138-556187), a Chief Scientist Office grant (TCS/19/11) and core support from Medical Research Council (MC_ UU_12014) core funding for the MRC-University of Glasgow Centre for Virus Research.


Assuntos
Hipertermia Induzida , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Micro-Ondas , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/terapia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/genética , Morte Celular , Proteínas E7 de Papillomavirus/genética
2.
EMBO J ; 41(3): e109728, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935163

RESUMO

Human respiratory syncytial virus (RSV) causes severe respiratory illness in children and the elderly. Here, using cryogenic electron microscopy and tomography combined with computational image analysis and three-dimensional reconstruction, we show that there is extensive helical ordering of the envelope-associated proteins and glycoproteins of RSV filamentous virions. We calculated a 16 Å resolution sub-tomogram average of the matrix protein (M) layer that forms an endoskeleton below the viral envelope. These data define a helical lattice of M-dimers, showing how M is oriented relative to the viral envelope. Glycoproteins that stud the viral envelope were also found to be helically ordered, a property that was coordinated by the M-layer. Furthermore, envelope glycoproteins clustered in pairs, a feature that may have implications for the conformation of fusion (F) glycoprotein epitopes that are the principal target for vaccine and monoclonal antibody development. We also report the presence, in authentic virus infections, of N-RNA rings packaged within RSV virions. These data provide molecular insight into the organisation of the virion and the mechanism of its assembly.


Assuntos
Vírus Sincicial Respiratório Humano/ultraestrutura , Envelope Viral/ultraestrutura , Proteínas da Matriz Viral/química , Células A549 , Animais , Chlorocebus aethiops , Glicoproteínas/química , Humanos , Conformação Proteica em alfa-Hélice , Vírus Sincicial Respiratório Humano/química , Células Vero , Envelope Viral/química
3.
J Virol ; 95(13): e0028221, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853966

RESUMO

Vesivirus 2117 is an adventitious agent that has been responsible for lost productivity in biopharmaceutical production following contamination of Chinese hamster ovary cell cultures in commercial bioreactors. A member of the Caliciviridae, 2117 is classified within the Vesivirus genus in a clade that includes canine and mink caliciviruses but is distinct from the vesicular exanthema of swine virus (VESV) clade, which includes the extensively studied feline calicivirus (FCV). We have used cryogenic electron microscopy (cryo-EM) to determine the structure of the capsid of this small, icosahedral, positive-sense-RNA-containing virus. We show that the outer face of the dimeric capsomeres, which contains the receptor binding site and major immunodominant epitopes in all caliciviruses studied thus far, is quite different from that of FCV. This is a consequence of a 22-amino-acid insertion in the sequence of the FCV major capsid protein that forms a "cantilevered arm" that both plays an important role in receptor engagement and undergoes structural rearrangements thought to be important for genome delivery to the cytosol. Our data highlight a potentially important difference in the attachment and entry pathways employed by the different clades of the Vesivirus genus. IMPORTANCE Vesivirus 2117 has caused significant losses in manufacturing of biopharmaceutical products following contamination of cell cultures used in their production. We report the structure of the vesivirus 2117 capsid, the shell that encloses the virus's genome. Comparison of this structure with that of a related vesivirus, feline calicivirus (FCV), highlighted potentially important differences related to virus attachment and entry. Our findings suggest that these two viruses may bind differently to receptors at the host cell surface. We also show that a region of the capsid protein of FCV that rearranges following receptor engagement is not present in vesivirus 2117. These structural changes in the FCV capsid have been shown to allow the assembly of a portal-like structure that is hypothesized to deliver the viral genome to the cell's interior. Our data suggest that the 2117 portal assembly may employ a different means of anchoring to the outer face of the capsid.


Assuntos
Capsídeo/metabolismo , Vesivirus/metabolismo , Animais , Células CHO , Proteínas do Capsídeo/genética , Linhagem Celular , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Estrutura Quaternária de Proteína/fisiologia , Vírion/metabolismo , Ligação Viral
4.
Nature ; 565(7739): 377-381, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626974

RESUMO

To initiate infection, many viruses enter their host cells by triggering endocytosis following receptor engagement. However, the mechanisms by which non-enveloped viruses escape the endosome are poorly understood. Here we present near-atomic-resolution cryo-electron microscopy structures for feline calicivirus both undecorated and labelled with a soluble fragment of its cellular receptor, feline junctional adhesion molecule A. We show that VP2, a minor capsid protein encoded by all caliciviruses1,2, forms a large portal-like assembly at a unique three-fold axis of symmetry, following receptor engagement. This assembly-which was not detected in undecorated virions-is formed of twelve copies of VP2, arranged with their hydrophobic N termini pointing away from the virion surface. Local rearrangement at the portal site leads to the opening of a pore in the capsid shell. We hypothesize that the portal-like assembly functions as a channel for the delivery of the calicivirus genome, through the endosomal membrane, into the cytoplasm of a host cell, thereby initiating infection. VP2 was previously known to be critical for the production of infectious virus3; our findings provide insights into its structure and function that advance our understanding of the Caliciviridae.


Assuntos
Calicivirus Felino/metabolismo , Calicivirus Felino/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Molécula A de Adesão Juncional/ultraestrutura , Receptores Virais/ultraestrutura , Montagem de Vírus , Animais , Calicivirus Felino/química , Calicivirus Felino/crescimento & desenvolvimento , Proteínas do Capsídeo/química , Gatos , Linhagem Celular , Endossomos/metabolismo , Endossomos/virologia , Genoma Viral , Interações Hidrofóbicas e Hidrofílicas , Molécula A de Adesão Juncional/química , Molécula A de Adesão Juncional/metabolismo , Modelos Moleculares , Receptores Virais/química , Receptores Virais/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA