Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900938

RESUMO

Obesity is associated with increased incidence and metastasis of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype. The extracellular matrix (ECM) is a major component of the tumor microenvironment that drives metastasis. To characterize the temporal effects of age and high-fat diet-driven weight gain on the ECM, we injected allograft tumor cells at 4-week intervals into mammary fat pads of mice fed a control or high-fat diet (HFD), assessing tumor growth and metastasis and evaluating the ECM composition of the mammary fat pads, lungs, and livers. Tumor growth was increased in obese mice after 12 weeks on the HFD. Liver metastasis increased in obese mice only at 4 weeks, and elevated body weight correlated with increased metastasis to the lungs but not the liver. Whole decellularized ECM coupled with proteomics indicated that early stages of obesity were sufficient to induce changes in the ECM composition. Obesity led to increased abundance of the pro-invasive ECM proteins collagen IV and collagen VI in the mammary glands and enhanced the invasive capacity of cancer cells. Cells of stromal vascular fraction and adipose stem and progenitor cells were primarily responsible for secreting collagen IV and VI, not adipocytes. Longer exposure to HFD increased the invasive potential of ECM isolated from lung and liver, with significant changes in ECM composition found in the liver with short-term HFD exposure. Together, this data suggests that changes in the breast, lung, and liver ECM underlie some of the effects of obesity on TNBC incidence and metastasis.

2.
Breast Cancer Res ; 26(1): 43, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468326

RESUMO

BACKGROUND: Metastasis is the leading cause of death in breast cancer patients. For metastasis to occur, tumor cells must invade locally, intravasate, and colonize distant tissues and organs, all steps that require tumor cell migration. The majority of studies on invasion and metastasis rely on human breast cancer cell lines. While it is known that these cells have different properties and abilities for growth and metastasis, the in vitro morphological, proliferative, migratory, and invasive behavior of these cell lines and their correlation to in vivo behavior is poorly understood. Thus, we sought to classify each cell line as poorly or highly metastatic by characterizing tumor growth and metastasis in a murine model of six commonly used human triple-negative breast cancer xenografts, as well as determine which in vitro assays commonly used to study cell motility best predict in vivo metastasis. METHODS: We evaluated the liver and lung metastasis of human TNBC cell lines MDA-MB-231, MDA-MB-468, BT549, Hs578T, BT20, and SUM159 in immunocompromised mice. We characterized each cell line's cell morphology, proliferation, and motility in 2D and 3D to determine the variation in these parameters between cell lines. RESULTS: We identified MDA-MB-231, MDA-MB-468, and BT549 cells as highly tumorigenic and metastatic, Hs578T as poorly tumorigenic and metastatic, BT20 as intermediate tumorigenic with poor metastasis to the lungs but highly metastatic to the livers, and SUM159 as intermediate tumorigenic but poorly metastatic to the lungs and livers. We showed that metrics that characterize cell morphology are the most predictive of tumor growth and metastatic potential to the lungs and liver. Further, we found that no single in vitro motility assay in 2D or 3D significantly correlated with metastasis in vivo. CONCLUSIONS: Our results provide an important resource for the TNBC research community, identifying the metastatic potential of 6 commonly used cell lines. Our findings also support the use of cell morphological analysis to investigate the metastatic potential and emphasize the need for multiple in vitro motility metrics using multiple cell lines to represent the heterogeneity of metastasis in vivo.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Xenoenxertos , Transplante Heterólogo , Movimento Celular
3.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662270

RESUMO

Younger age and obesity increase the incidence and metastasis of triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer. The extracellular matrix (ECM) promotes tumor invasion and metastasis. We characterized the effect of age and obesity on the ECM of mammary fat pads, lungs, and liver using a diet-induced obesity (DIO) model. At 4 week intervals, we either injected the mammary fat pads with allograft tumor cells to characterize tumor growth and metastasis or isolated the mammary fat pads and livers to characterize the ECM. Age had no effect on tumor growth but increased lung and liver metastasis after 16 weeks. Obesity increased tumor growth starting at 12 weeks, increased liver metastasis only at 4 weeks, and weight gain correlated to increased lung but not liver metastasis. Utilizing whole decellularized ECM coupled with proteomics, we found that early stages of obesity were sufficient to induce changes in the ECM composition and invasive potential of mammary fat pads with increased abundance of pro-invasive ECM proteins Collagen IV and Collagen VI. We identified cells of stromal vascular fraction and adipose stem and progenitor cells as primarily responsible for secreting Collagen IV and VI, not adipocytes. We characterized the changes in ECM in the lungs and liver, and determined that older age decreases the metastatic potential of lung and liver ECM while later-stage obesity increases the metastatic potential. These data implicate ECM changes in the primary tumor and metastatic microenvironment as mechanisms by which age and obesity contribute to breast cancer progression.

4.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087348

RESUMO

The extracellular matrix (ECM), a major component of the tumor microenvironment, promotes local invasion to drive metastasis. Here, we describe a method to study whole-tissue ECM effects from disease states associated with metastasis on tumor cell phenotypes and identify the individual ECM proteins and signaling pathways that are driving these effects. We show that decellularized ECM from tumor-bearing and obese mammary glands drives TNBC cell invasion. Proteomics of the ECM from the obese mammary gland led us to identify full-length collagen VI as a novel driver of TNBC cell invasion whose abundance in tumor stroma increases with body mass index in human TNBC patients. Last, we describe the mechanism by which collagen VI contributes to TNBC cell invasion via NG2-EGFR cross-talk and MAPK signaling. Overall, these studies demonstrate the value of decellularized ECM scaffolds obtained from tissues to identify novel functions of the ECM.


Assuntos
Colágeno Tipo VI , Matriz Extracelular Descelularizada , Obesidade , Neoplasias de Mama Triplo Negativas , Colágeno Tipo VI/metabolismo , Matriz Extracelular/metabolismo , Humanos , Invasividade Neoplásica , Obesidade/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA