Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Neuromuscul Dis ; 11(3): 687-699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38607761

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a rare, degenerative, recessive X-linked neuromuscular disease. Mutations in the gene encoding dystrophin lead to the absence of functional dystrophin protein. Individuals living with DMD exhibit progressive muscle weakness resulting in loss of ambulation and limb function, respiratory insufficiency, and cardiomyopathy, with multiorgan involvement. Adeno-associated virus vector-mediated gene therapy designed to enable production of functional dystrophin protein is a new therapeutic strategy. Delandistrogene moxeparvovec (Sarepta Therapeutics, Cambridge, MA) is indicated for treatment of ambulatory pediatric patients aged 4 through 5 years with DMD who have an indicated mutation in the DMD gene. OBJECTIVE: Evidence-based considerations for management of potential adverse events following gene therapy treatment for DMD are lacking in clinical literature. Our goal was to provide interdisciplinary consensus considerations for selected treatment-related adverse events (TRAEs) (vomiting, acute liver injury, myocarditis, and immune-mediated myositis) that may arise following gene therapy dosing with delandistrogene moxeparvovec. METHODS: An interdisciplinary panel of 12 specialists utilized a modified Delphi process to develop consensus considerations for the evaluation and management of TRAEs reported in delandistrogene moxeparvovec clinical studies. Panelists completed 2 Questionnaires prior to gathering for an in-person discussion. Consensus was defined as a majority (≥58% ; 7/12) of panelists either agreeing or disagreeing. RESULTS: Panelists agreed that the choice of baseline assessments should be informed by individual clinical indications, the treating provider's judgment, and prescribing information. Corticosteroid dosing for treatment of TRAEs should be optimized by considering individual risk versus benefit for each indication. In all cases involving patients with a confirmed TRAE, consultations with appropriate specialists were suggested. CONCLUSIONS: The Delphi Panel established consensus considerations for the evaluation and management of potential TRAEs for patients receiving delandistrogene moxeparvovec, including vomiting, acute liver injury, myocarditis, and immune-mediated myositis.


Assuntos
Produtos Biológicos , Terapia Genética , Distrofia Muscular de Duchenne , Proteínas Recombinantes de Fusão , Humanos , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Terapia Genética/métodos , Técnica Delphi , Miocardite/terapia , Pré-Escolar
2.
Nat Commun ; 15(1): 1758, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413582

RESUMO

SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.


Assuntos
Distrofias Musculares , Criança , Humanos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , RNA/metabolismo , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo
4.
J Neuromuscul Dis ; 11(1): 201-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37980682

RESUMO

BACKGROUND: Becker muscular dystrophy is an X-linked, genetic disorder causing progressive degeneration of skeletal and cardiac muscle, with a widely variable phenotype. OBJECTIVE: A 3-year, longitudinal, prospective dataset contributed by patients with confirmed Becker muscular dystrophy was analyzed to characterize the natural history of this disorder. A better understanding of the natural history is crucial to rigorous therapeutic trials. METHODS: A cohort of 83 patients with Becker muscular dystrophy (5-75 years at baseline) were followed for up to 3 years with annual assessments. Muscle and pulmonary function outcomes were analyzed herein. Age-stratified statistical analysis and modeling were conducted to analyze cross-sectional data, time-to-event data, and longitudinal data to characterize these clinical outcomes. RESULTS: Deletion mutations of dystrophin exons 45-47 or 45-48 were most common. Subgroup analysis showed greater pairwise association between motor outcomes at baseline than association between these outcomes and age. Stronger correlations between outcomes for adults than for those under 18 years were also observed. Using cross-sectional binning analysis, a ceiling effect was seen for North Star Ambulatory Assessment but not for other functional outcomes. Longitudinal analysis showed a decline in percentage predicted forced vital capacity over the life span. There was relative stability or improved median function for motor functional outcomes through childhood and adolescence and decreasing function with age thereafter. CONCLUSIONS: There is variable progression of outcomes resulting in significant heterogeneity of the clinical phenotype of Becker muscular dystrophy. Disease progression is largely manifest in adulthood. There are implications for clinical trial design revealed by this longitudinal analysis of a Becker natural history dataset.


Assuntos
Distrofia Muscular de Duchenne , Adulto , Adolescente , Humanos , Criança , Distrofia Muscular de Duchenne/genética , Estudos Prospectivos , Estudos Transversais , Fenótipo , Miocárdio
5.
Neuromuscul Disord ; 34: 41-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142474

RESUMO

5q spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease caused by absence of the SMN1 gene with three FDA approved genetic therapies which significantly improve outcomes. The AAV9 mediated gene replacement therapy, onasemnogene abeparvovec, has the greatest potential for side effects. Here we report the safety and outcomes from 46 children treated with onasemnogene abeparvovec in the state of Ohio between December 2018 and January 2023. In our cohort, onasemnogene abeparvovec treatment remained safe and no child experienced any significant adverse events, including thrombotic microangiopathy, liver failure or death. All children experienced benefit, although the benefit in those with 2 copies of SMN2 was variable. 79 % of the children treated when symptomatic had a SMN2 modifying therapy added on. With careful screening and post treatment monitoring, onasemnogene abeparvovec is safe and effective for children with SMA in the state of Ohio, but more work needs to be done to ensure optimal outcomes for all children with 2 copies of SMN2.


Assuntos
Produtos Biológicos , Atrofia Muscular Espinal , Doenças Neurodegenerativas , Proteínas Recombinantes de Fusão , Atrofias Musculares Espinais da Infância , Criança , Humanos , Ohio , Terapia Genética
6.
J Neuromuscul Dis ; 11(1): 129-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160362

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a genetic neurodegenerative disorder with onset predominantly in infants and children. In recent years, newborn screening and three treatments, including gene replacement therapy (Onasemnogene abeparvovec-xioi), have become available in the United States, aiding in the diagnosis and treatment of children with SMA. OBJECTIVE: To evaluate parents' experiences with newborn screening and gene replacement therapy and to explore best practices for positive newborn screen disclosure and counseling of families. METHODS: We conducted semi-structured interviews (n = 32) and online surveys (n = 79) of parents whose children were diagnosed with SMA (on newborn screening or symptomatically) and treated with gene replacement therapy. RESULTS: Gene replacement therapy was most parents' first treatment choice, although concerns regarding long term efficacy (65%) and safety (51%) were common. Information provided during the newborn screening disclosure was quite variable. Only 34% of parents reported the information provided was sufficient and expressed need for more information about treatment. Although many parents experienced denial of the diagnosis at initial disclosure, 94% were in favor of inclusion of SMA on newborn screening. Parents were almost universally anxious following diagnosis and over half remained anxious at the time of study participation with uncertainty of the future being a key concern. Many parents had difficulty processing information provided during their first clinic appointment due to its complexity and their emotional state at the time. CONCLUSIONS: Utilizing this data, we provide a recommendation for the information provided in newborn screening disclosure, propose adjustments to education and counseling during the first clinic visit, and bring awareness of parents' mental health difficulties.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Lactente , Recém-Nascido , Criança , Humanos , Estados Unidos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Pais/psicologia , Inquéritos e Questionários , Ansiedade
7.
J Neuromuscul Dis ; 10(4): 685-699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37248912

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a neuromuscular disease stemming from dystrophin gene mutations. Lack of dystrophin leads to progressive muscle damage and replacement of muscle with fibrotic and adipose tissue. Pamrevlumab (FG-3019), a fully human monoclonal antibody that binds to connective tissue growth factor (CTGF), is in Phase III development for treatment of DMD and other diseases. METHODS: MISSION (Study 079; NCT02606136) was an open-label, Phase II, single-arm trial of pamrevlumab in 21 non-ambulatory patients with DMD (aged≥12 years, receiving corticosteroids) who received 35-mg/kg intravenous infusions every 2 weeks for 2 years. The primary endpoint was change from baseline in percent predicted forced vital capacity (ppFVC). Secondary endpoints included other pulmonary function tests, upper limb function and strength assessments, and changes in upper arm fat and fibrosis scores on magnetic resonance imaging. RESULTS: Fifteen patients completed the trial. Annual change from baseline (SE) in ppFVC was -4.2 (0.7) (95% CI -5.5, -2.8). Rate of decline in ppFVC in pamrevlumab-treated patients was slower than observed in historical published trials of non-ambulatory patients. MISSION participants experienced slower-than-anticipated muscle function declines compared with natural history and historical published trials of non-ambulatory patients with DMD. Pamrevlumab was well-tolerated. Treatment-emergent adverse events were mild to moderate, and none led to study discontinuation. CONCLUSIONS: nti-CTGF therapy with pamrevlumab represents a potential treatment for DMD. The lack of internal control group limits the results.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina , Anticorpos Monoclonais/uso terapêutico , Fator de Crescimento do Tecido Conjuntivo
8.
J Neuromuscul Dis ; 10(3): 439-447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005891

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is caused by DMD gene mutations, resulting in absence of functional dystrophin protein. Viltolarsen, an exon 53 skipping therapy, significantly increased dystrophin levels in patients with DMD. Presented here are completed study results of > 4 years of functional outcomes in viltolarsen-treated patients compared to a historical control group (Cooperative International Neuromuscular Research Group Duchenne Natural History Study [CINRG DNHS]). OBJECTIVE: To evaluate the efficacy and safety of viltolarsen for an additional 192 weeks in boys with DMD. METHODS: This phase 2, open-label, 192-week long-term extension (LTE) study (NCT03167255) evaluated the efficacy and safety of viltolarsen in participants aged 4 to < 10 years at baseline with DMD amenable to exon 53 skipping. All 16 participants from the initial 24-week study enrolled into this LTE. Timed function tests were compared to the CINRG DNHS group. All participants received glucocorticoid treatment. The primary efficacy outcome was time to stand from supine (TTSTAND). Secondary efficacy outcomes included additional timed function tests. Safety was continuously assessed. RESULTS: For the primary efficacy outcome (TTSTAND), viltolarsen-treated patients showed stabilization of motor function over the first two years and significant slowing of disease progression over the following two years compared with the CINRG DNHS control group which declined. Viltolarsen was well tolerated, with most reported treatment-emergent adverse events being mild or moderate. No participants discontinued drug during the study. CONCLUSIONS: Based on the results of this 4-year LTE, viltolarsen can be an important treatment strategy for DMD patients amenable to exon 53 skipping.


Assuntos
Distrofia Muscular de Duchenne , Masculino , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Oligonucleotídeos/efeitos adversos , Glucocorticoides/uso terapêutico
9.
J Neuromuscul Dis ; 10(3): 389-404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911944

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a neuromuscular disorder arising from biallelic non-functional survival motor neuron 1 (SMN1) genes with variable copies of partially functional SMN2 gene. Intrathecal onasemnogene abeparvovec administration, at fixed, low doses, may enable treatment of heavier patients ineligible for weight-based intravenous dosing. OBJECTIVE: STRONG (NCT03381729) assessed the safety/tolerability and efficacy of intrathecal onasemnogene abeparvovec for sitting, nonambulatory SMA patients. METHODS: Sitting, nonambulatory SMA patients (biallelic SMN1 loss, three SMN2 copies, aged 6-<60 months) received a single dose of intrathecal onasemnogene abeparvovec. Patients were enrolled sequentially into one of three (low, medium, and high) dose cohorts and stratified into two groups by age at dosing: younger (6-<24 months) and older (24-<60 months). Primary endpoints included safety/tolerability, independent standing ≥3 seconds (younger group), and change in Hammersmith Functional Motor Scale Expanded (HFMSE) from baseline (older group) compared with historic controls. RESULTS: Thirty-two patients were enrolled and completed the study (medium dose, n = 25). All patients had one or more treatment-emergent adverse events, with one serious and related to treatment (transaminase elevations). No deaths were reported. One of 13 patients (7.7%) in the younger group treated with the medium dose achieved independent standing. At Month 12 for the older group receiving the medium dose, change from baseline in HFMSE was significantly improved compared with the SMA historic control population (P < 0.01). CONCLUSIONS: Intrathecal onasemnogene abeparvovec was safe and well-tolerated. Older patients treated with the medium dose demonstrated increases in HFMSE score greater than commonly observed in natural history.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Humanos , Atrofias Musculares Espinais da Infância/terapia , Postura Sentada , Atrofia Muscular Espinal/tratamento farmacológico , Neurônios Motores , Terapia Genética
10.
J Neuromuscul Dis ; 9(4): 493-501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634851

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a rare, genetic disease caused by mutations in the DMD gene resulting in an absence of functional dystrophin protein. Viltolarsen, an exon 53 skipping therapy, has been shown to increase endogenous dystrophin levels. Herein, long-term (>2 years) functional outcomes in viltolarsen treated patients were compared to a matched historical control group. OBJECTIVE: To evaluate long-term efficacy and safety of the anti-sense oligonucleotide viltolarsen in the treatment of patients with DMD amenable to exon 53 skipping therapy. METHODS: This trial (NCT03167255) is the extension of a previously published 24-week trial in North America (NCT02740972) that examined dystrophin levels, timed function tests compared to a matched historical control group (Cooperative International Neuromuscular Research Group Duchenne Natural History Study, CINRG DNHS), and safety in boys 4 to < 10 years (N = 16) with DMD amenable to exon 53 skipping who were treated with viltolarsen. Both groups were treated with glucocorticoids. All 16 participants elected to enroll in this long-term trial (up to 192 weeks) to continue evaluation of motor function and safety. RESULTS: Time to stand from supine and time to run/walk 10 meters showed stabilization from baseline through week 109 for viltolarsen-treated participants whereas the historical control group showed decline (statistically significant differences for multiple timepoints). Safety was similar to that observed in the previous 24-week trial, which was predominantly mild. There have been no treatment-related serious adverse events and no discontinuations. CONCLUSIONS: Based on these results at over 2 years, viltolarsen can be a new treatment option for patients with DMD amenable to exon 53 skipping.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Distrofina/metabolismo , Humanos , Masculino , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos Antissenso
11.
Mol Ther Methods Clin Dev ; 25: 74-83, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35356756

RESUMO

Given the increasing number of gene transfer therapy studies either completed or underway, there is growing attention to the importance of preexisting adaptive immunity to the viral vectors used. The recombinant viral vectors developed for gene transfer therapy share structural features with naturally occurring wild-type virus. Antibodies generated against viral vectors obtained through a previous exposure to wild-type virus can potentially compromise transgene expression by blocking transduction, thereby limiting the therapeutic efficacy of the gene transfer therapy; they may also pose potential safety concerns. Therefore, systemic gene transfer delivery requires testing patients for preexisting antibodies. Two different assays have been used: (1) binding assays that focus on total antibodies (both neutralizing and non-neutralizing) and (2) neutralizing assays that detect neutralizing antibodies. In this review we focus on adeno-associated virus-based gene therapies, describing the immune response that occurs to naturally occurring adeno-associated viruses, the implications for patients with this exposure, the assays used to detect preexisting immune responses, and strategies to circumvent preexisting adaptive immunity to expand the patient base that could benefit from such therapies.

12.
Hum Mutat ; 43(4): 511-528, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165973

RESUMO

DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Humanos , Íntrons/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Sítios de Splice de RNA
13.
J Neuromuscul Dis ; 9(1): 39-52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34420980

RESUMO

BACKGROUND: Studies 4658-201/202 (201/202) evaluated treatment effects of eteplirsen over 4 years in patients with Duchenne muscular dystrophy and confirmed exon-51 amenable genetic mutations. Chart review Study 4658-405 (405) further followed these patients while receiving eteplirsen during usual clinical care. OBJECTIVE: To compare long-term clinical outcomes of eteplirsen-treated patients from Studies 201/202/405 with those of external controls. METHODS: Median total follow-up time was approximately 6 years of eteplirsen treatment. Outcomes included loss of ambulation (LOA) and percent-predicted forced vital capacity (FVC%p). Time to LOA was compared between eteplirsen-treated patients and standard of care (SOC) external controls and was measured from eteplirsen initiation in 201/202 or, in the SOC group, from the first study visit. Comparisons were conducted using univariate Kaplan-Meier analyses and log-rank tests, and multivariate Cox proportional hazards models with regression adjustment for baseline characteristics. Annual change in FVC%p was compared between eteplirsen-treated patients and natural history study patients using linear mixed models with repeated measures. RESULTS: Data were included from all 12 patients in Studies 201/202 and the 10 patients with available data from 405. Median age at LOA was 15.16 years. Eteplirsen-treated patients experienced a statistically significant longer median time to LOA by 2.09 years (5.09 vs. 3.00 years, p < 0.01) and significantly attenuated rates of pulmonary decline vs. natural history patients (FVC%p change: -3.3 vs. -6.0 percentage points annually, p < 0.0001). CONCLUSIONS: Study 405 highlights the functional benefits of eteplirsen on ambulatory and pulmonary function outcomes up to 7 years of follow-up in comparison to external controls.


Assuntos
Progressão da Doença , Limitação da Mobilidade , Morfolinos/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Avaliação de Resultados em Cuidados de Saúde , Sistema de Registros , Adolescente , Criança , Humanos , Masculino , Morfolinos/administração & dosagem , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Tempo , Capacidade Vital , Teste de Caminhada
14.
Muscle Nerve ; 65(3): 266-277, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878187

RESUMO

Duchenne muscular dystrophy (DMD) is associated with progressive muscle weakness, loss of ambulation (LOA), and early mortality. In this review we have synthesized published data on the clinical course of DMD by genotype. Using a systematic search implemented in Medline and Embase, 53 articles were identified that describe the clinical course of DMD, with pathogenic variants categorizable by exon skip or stop-codon readthrough amenability and outcomes presented by age. Outcomes described included those related to ambulatory, cardiac, pulmonary, or cognitive function. Estimates of the mean (95% confidence interval) age at LOA ranged from 9.1 (8.7-9.6) years among 90 patients amenable to skipping exon 53 to 11.5 (9.5-13.5) years among three patients amenable to skipping exon 8. Although function worsened with age, the impact of genotype was less clear for other outcomes (eg, forced vital capacity and left ventricular ejection fraction). Understanding the distribution of pathogenic variants is important for studies in DMD, as this research suggests major differences in the natural history of disease. In addition, specific details of the use of key medications, including corticosteroids, antisense oligonucleotides, and cardiac medications, should be reported.


Assuntos
Distrofia Muscular de Duchenne , Criança , Distrofina/genética , Genótipo , Humanos , Volume Sistólico , Função Ventricular Esquerda
16.
Pediatr Neurol ; 122: 21-26, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34271497

RESUMO

BACKGROUND: Approved treatments in spinal muscular atrophy (SMA) have resulted in unprecedented gains for many individuals. Use of available outcomes, typically developed for a specific type of SMA, do not cover the range of progression, often resulting in a battery of functional testing being completed at visits. Our objective was to validate the Neuromuscular Gross Motor Outcome (GRO) as a tool to quantify function in SMA across the span of abilities. METHODS: Patients with genetically confirmed SMA completed functional testing at each visit including the Neuromuscular GRO and other appropriate gross motor outcomes. RESULTS: We enrolled 91 patients with SMA types 1 to 3 between 8 days and 32.1 years. The GRO utilizes a 0- to 2-point scale with scores in our cohort ranging from 1 to 95 points with no floor or ceiling effect. GRO scores were significantly different across functional categories (P < 0.001) and treatment status (P = 0.01) and correlated to other functional assessments (P ≤ 0.001). All patients were measured using the GRO, whereas traditional outcomes were only appropriate on 36% to 59% of our cohort. CONCLUSION: The Neuromuscular GRO quantifies function across the span of age and abilities included in our cohort, allowing for continuous longitudinal monitoring on one scale to reduce the burden of testing in our heterogeneous clinic population.


Assuntos
Técnicas de Diagnóstico Neurológico/normas , Progressão da Doença , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/fisiopatologia , Índice de Gravidade de Doença , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Avaliação de Resultados em Cuidados de Saúde , Reprodutibilidade dos Testes , Adulto Jovem
17.
Nat Med ; 27(7): 1197-1204, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34059824

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esfingolipídeos/biossíntese , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Sistemas CRISPR-Cas , Criança , Feminino , Genes Dominantes , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Adulto Jovem
18.
J Neuromuscul Dis ; 8(6): 989-1001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34120909

RESUMO

BackgroundEteplirsen received accelerated FDA approval for treatment of Duchenne muscular dystrophy (DMD) with mutations amenable to exon 51 skipping, based on demonstrated dystrophin production.ObjectiveTo report results from PROMOVI, a phase 3, multicenter, open-label study evaluating efficacy and safety of eteplirsen in a larger cohort.MethodsAmbulatory patients aged 7-16 years, with confirmed mutations amenable to exon 51 skipping, received eteplirsen 30 mg/kg/week intravenously for 96 weeks. An untreated cohort with DMD not amenable to exon 51 skipping was also enrolled.Results78/79 eteplirsen-treated patients completed 96 weeks of treatment. 15/30 untreated patients completed the study; this cohort was considered an inappropriate control group because of genotype-driven differences in clinical trajectory. At Week 96, eteplirsen-treated patients showed increased exon skipping (18.7-fold) and dystrophin protein (7-fold) versus baseline. Post-hoc comparisons with patients from eteplirsen phase 2 studies (4658-201/202) and mutation-matched external natural history controls confirmed previous results, suggesting clinically notable attenuation of decline on the 6-minute walk test over 96 weeks (PROMOVI: -68.9 m; phase 2 studies: -67.3 m; external controls: -133.8 m) and significant attenuation of percent predicted forced vital capacity annual decline (PROMOVI: -3.3%, phase 2 studies: -2.2%, external controls: -6.0%; p < 0.001). Adverse events were generally mild to moderate and unrelated to eteplirsen. Most frequent treatment-related adverse events were headache and vomiting; none led to treatment discontinuation.ConclusionsThis large, multicenter study contributes to the growing body of evidence for eteplirsen, confirming a positive treatment effect, favorable safety profile, and slowing of disease progression versus natural history.


Assuntos
Morfolinos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Adolescente , Criança , Progressão da Doença , Distrofina , Éxons , Humanos , Masculino , Mutação , Capacidade Vital
19.
Muscle Nerve ; 64(2): 153-155, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33959970

RESUMO

Implementation of newborn screening for spinal muscular atrophy (SMA) in 33 US states and increased genetic carrier screening have led to an increase in early, presymptomatic diagnosis of SMA. Early treatment is critically important and is recommended for presymptomatic infants with two to four copies of survival motor neuron 2. Currently, no specific treatment recommendations exist for preterm infants with SMA. The US Food and Drug Administration does not recommend using onasemnogene abeparvovec-xioi in preterm infants. Some insurance companies interpret "preterm" to be less than 40 weeks gestational age (GA) instead of the commonly accepted 37 weeks GA, which can be a barrier to treatment access. Given the risk of rapid decline in some infants, we recommend treatment of preterm infants when they reach 37 weeks GA, based on the definitions of term GA from the World Health Organization and Centers for Disease Control and Prevention, assuming all other treatment criteria are met.


Assuntos
Produtos Biológicos/uso terapêutico , Atrofia Muscular Espinal/tratamento farmacológico , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Fatores de Tempo , Terapia Genética/métodos , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Neurônios Motores , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Triagem Neonatal , Atrofias Musculares Espinais da Infância/diagnóstico
20.
Semin Pediatr Neurol ; 37: 100877, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33892842

RESUMO

Duchenne muscular dystrophy (DMD) is marked by pathogenic variants in the DMD gene, leading to reduced or absent dystrophin translation, muscle fiber destruction, loss of ambulation, cardiomyopathy, respiratory failure, and eventually death. Disease progression is slowed with use of prednisone or other corticosteroid agents. Gene replacement therapy, which is one of the focus points of this review, has emerged as the most promising potential treatment for DMD, though alternative RNA-based strategies have been employed for patients with specific pathogenic variants. While challenges remain, many of these novel therapeutic approaches hold promise for treating this devastating disease.


Assuntos
Distrofia Muscular de Duchenne , Terapia Genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA