Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Viruses ; 16(4)2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38675850

RESUMO

Respiratory viral infections (RVIs) are common reasons for healthcare consultations. The inpatient management of RVIs consumes significant resources. From 2009 to 2014, we assessed the costs of RVI management in 4776 hospitalized children aged 0-18 years participating in a quality improvement program, where all ILI patients underwent virologic testing at the National Reference Centre followed by detailed recording of their clinical course. The direct (medical or non-medical) and indirect costs of inpatient management outside the ICU ('non-ICU') versus management requiring ICU care ('ICU') added up to EUR 2767.14 (non-ICU) vs. EUR 29,941.71 (ICU) for influenza, EUR 2713.14 (non-ICU) vs. EUR 16,951.06 (ICU) for RSV infections, and EUR 2767.33 (non-ICU) vs. EUR 14,394.02 (ICU) for human rhinovirus (hRV) infections, respectively. Non-ICU inpatient costs were similar for all eight RVIs studied: influenza, RSV, hRV, adenovirus (hAdV), metapneumovirus (hMPV), parainfluenza virus (hPIV), bocavirus (hBoV), and seasonal coronavirus (hCoV) infections. ICU costs for influenza, however, exceeded all other RVIs. At the time of the study, influenza was the only RVI with antiviral treatment options available for children, but only 9.8% of influenza patients (non-ICU) and 1.5% of ICU patients with influenza received antivirals; only 2.9% were vaccinated. Future studies should investigate the economic impact of treatment and prevention of influenza, COVID-19, and RSV post vaccine introduction.


Assuntos
Efeitos Psicossociais da Doença , Hospitalização , Infecções Respiratórias , Humanos , Pré-Escolar , Criança , Lactente , Infecções Respiratórias/economia , Infecções Respiratórias/virologia , Infecções Respiratórias/terapia , Alemanha/epidemiologia , Adolescente , Masculino , Feminino , Recém-Nascido , Hospitalização/economia , COVID-19/epidemiologia , COVID-19/economia , COVID-19/terapia , Pacientes Internados , Viroses/economia , Viroses/terapia , SARS-CoV-2 , Custos de Cuidados de Saúde
2.
Adv Respir Med ; 92(1): 66-76, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247553

RESUMO

Nirmatrelvir/Ritonavir is an oral treatment for mild to moderate COVID-19 cases with a high risk for a severe course of the disease. For this paper, a comprehensive literature review was performed, leading to a summary of currently available data on Nirmatrelvir/Ritonavir's ability to reduce the risk of progressing to a severe disease state. Herein, the focus lies on publications that include comparisons between patients receiving Nirmatrelvir/Ritonavir and a control group. The findings can be summarized as follows: Data from the time when the Delta-variant was dominant show that Nirmatrelvir/Ritonavir reduced the risk of hospitalization or death by 88.9% for unvaccinated, non-hospitalized high-risk individuals. Data from the time when the Omicron variant was dominant found decreased relative risk reductions for various vaccination statuses: between 26% and 65% for hospitalization. The presented papers that differentiate between unvaccinated and vaccinated individuals agree that unvaccinated patients benefit more from treatment with Nirmatrelvir/Ritonavir. However, when it comes to the dependency of potential on age and comorbidities, further studies are necessary. From the available data, one can conclude that Nirmatrelvir/Ritonavir cannot substitute vaccinations; however, its low manufacturing cost and easy administration make it a valuable tool in fighting COVID-19, especially for countries with low vaccination rates.


Assuntos
COVID-19 , Ritonavir , Humanos , Ritonavir/uso terapêutico , Resultado do Tratamento , Hospitalização
3.
iScience ; 26(9): 107554, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37654471

RESUMO

Measurable levels of immunoglobulin G antibodies develop after infections with and vaccinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These antibody levels are dynamic: due to waning, antibody levels will drop over time. During the COVID-19 pandemic, multiple models predicting infection dynamics were used by policymakers to support the planning of public health policies. Explicitly integrating antibody and waning effects into the models is crucial for reliable calculations of individual infection risk. However, only few approaches have been suggested that explicitly treat these effects. This paper presents a methodology that explicitly models antibody levels and the resulting protection against infection for individuals within an agent-based model. The model was developed in response to the complexity of different immunization sequences and types and is based on neutralization titer studies. This approach allows complex population studies with explicit antibody and waning effects. We demonstrate the usefulness of our model in two use cases.

4.
Sci Rep ; 13(1): 2058, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739319

RESUMO

Large-scale perturbations in the microbiome constitution are strongly correlated, whether as a driver or a consequence, with the health and functioning of human physiology. However, understanding the difference in the microbiome profiles of healthy and ill individuals can be complicated due to the large number of complex interactions among microbes. We propose to model these interactions as a time-evolving graph where nodes represent microbes and edges are interactions among them. Motivated by the need to analyse such complex interactions, we develop a method that can learn a low-dimensional representation of the time-evolving graph while maintaining the dynamics occurring in the high-dimensional space. Through our experiments, we show that we can extract graph features such as clusters of nodes or edges that have the highest impact on the model to learn the low-dimensional representation. This information is crucial for identifying microbes and interactions among them that are strongly correlated with clinical diseases. We conduct our experiments on both synthetic and real-world microbiome datasets.


Assuntos
Aprendizagem , Microbiota , Humanos , Nível de Saúde
5.
Artigo em Inglês | MEDLINE | ID: mdl-35007196

RESUMO

Analyzing mass spectrometry-based proteomics data with deep learning (DL) approaches poses several challenges due to the high dimensionality, low sample size, and high level of noise. Additionally, DL-based workflows are often hindered to be integrated into medical settings due to the lack of interpretable explanation. We present DLearnMS, a DL biomarker detection framework, to address these challenges on proteomics instances of liquid chromatography-mass spectrometry (LC-MS) - a well-established tool for quantifying complex protein mixtures. Our DLearnMS framework learns the clinical state of LC-MS data instances using convolutional neural networks. Based on the trained neural networks, we show how biomarkers can be identified using layer-wise relevance propagation. This enables detecting discriminating regions of the data and the design of more robust networks. One of the main advantages over other established methods is that no explicit preprocessing step is needed in our DLearnMS framework. Our evaluation shows that DLearnMS outperforms conventional LC-MS biomarker detection approaches in identifying fewer false positive peaks while maintaining a comparable amount of true positives peaks. Code availability: The code is available from the following GIT repository: https://github.com/SaharIravani/DlearnMS.


Assuntos
Aprendizado Profundo , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Biomarcadores
6.
BMC Genomics ; 23(1): 56, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033004

RESUMO

BACKGROUND: Pseudotime estimation from dynamic single-cell transcriptomic data enables characterisation and understanding of the underlying processes, for example developmental processes. Various pseudotime estimation methods have been proposed during the last years. Typically, these methods start with a dimension reduction step because the low-dimensional representation is usually easier to analyse. Approaches such as PCA, ICA or t-SNE belong to the most widely used methods for dimension reduction in pseudotime estimation methods. However, these methods usually make assumptions on the derived dimensions, which can result in important dataset properties being missed. In this paper, we suggest a new dictionary learning based approach, dynDLT, for dimension reduction and pseudotime estimation of dynamic transcriptomic data. Dictionary learning is a matrix factorisation approach that does not restrict the dependence of the derived dimensions. To evaluate the performance, we conduct a large simulation study and analyse 8 real-world datasets. RESULTS: The simulation studies reveal that firstly, dynDLT preserves the simulated patterns in low-dimension and the pseudotimes can be derived from the low-dimensional representation. Secondly, the results show that dynDLT is suitable for the detection of genes exhibiting the simulated dynamic patterns, thereby facilitating the interpretation of the compressed representation and thus the dynamic processes. For the real-world data analysis, we select datasets with samples that are taken at different time points throughout an experiment. The pseudotimes found by dynDLT have high correlations with the experimental times. We compare the results to other approaches used in pseudotime estimation, or those that are method-wise closely connected to dictionary learning: ICA, NMF, PCA, t-SNE, and UMAP. DynDLT has the best overall performance for the simulated and real-world datasets. CONCLUSIONS: We introduce dynDLT, a method that is suitable for pseudotime estimation. Its main advantages are: (1) It presents a model-free approach, meaning that it does not restrict the dependence of the derived dimensions; (2) Genes that are relevant in the detected dynamic processes can be identified from the dictionary matrix; (3) By a restriction of the dictionary entries to positive values, the dictionary atoms are highly interpretable.


Assuntos
Algoritmos , Transcriptoma , Simulação por Computador
7.
Cell Rep ; 35(2): 108941, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852845

RESUMO

Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (Nε-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A). Here, we show that in the Drosophila brain, hypusinated eIF5A levels decline with age but can be boosted by dietary spermidine. Several genetic regimes of attenuating eIF5A hypusination all similarly affect brain mitochondrial respiration resembling age-typical mitochondrial decay and also provoke a premature aging of locomotion and memory formation in adult Drosophilae. eIF5A hypusination, conserved through all eukaryotes as an obviously critical effector of spermidine, might thus be an important diagnostic and therapeutic avenue in aspects of brain aging provoked by mitochondrial decline.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Lisina/análogos & derivados , Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Espermidina/farmacologia , Administração Oral , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Respiração Celular/genética , Proteínas de Drosophila/classificação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Locomoção/fisiologia , Lisina/metabolismo , Memória/fisiologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Animais , Neurônios/metabolismo , Neurônios/patologia , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Espermidina/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
8.
PLoS One ; 16(4): e0249676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33887760

RESUMO

The Covid-19 disease has caused a world-wide pandemic with more than 60 million positive cases and more than 1.4 million deaths by the end of November 2020. As long as effective medical treatment and vaccination are not available, non-pharmaceutical interventions such as social distancing, self-isolation and quarantine as well as far-reaching shutdowns of economic activity and public life are the only available strategies to prevent the virus from spreading. These interventions must meet conflicting requirements where some objectives, like the minimization of disease-related deaths or the impact on health systems, demand for stronger counter-measures, while others, such as social and economic costs, call for weaker counter-measures. Therefore, finding the optimal compromise of counter-measures requires the solution of a multi-objective optimization problem that is based on accurate prediction of future infection spreading for all combinations of counter-measures under consideration. We present a strategy for construction and solution of such a multi-objective optimization problem with real-world applicability. The strategy is based on a micro-model allowing for accurate prediction via a realistic combination of person-centric data-driven human mobility and behavior, stochastic infection models and disease progression models including micro-level inclusion of governmental intervention strategies. For this micro-model, a surrogate macro-model is constructed and validated that is much less computationally expensive and can therefore be used in the core of a numerical solver for the multi-objective optimization problem. The resulting set of optimal compromises between counter-measures (Pareto front) is discussed and its meaning for policy decisions is outlined.


Assuntos
COVID-19/prevenção & controle , COVID-19/transmissão , Berlim/epidemiologia , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Simulação por Computador , Humanos , Modelos Estatísticos , SARS-CoV-2/isolamento & purificação , Processos Estocásticos
9.
Sci Rep ; 11(1): 5251, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664343

RESUMO

Remote monitoring devices, which can be worn or implanted, have enabled a more effective healthcare for patients with periodic heart arrhythmia due to their ability to constantly monitor heart activity. However, these devices record considerable amounts of electrocardiogram (ECG) data that needs to be interpreted by physicians. Therefore, there is a growing need to develop reliable methods for automatic ECG interpretation to assist the physicians. Here, we use deep convolutional neural networks (CNN) to classify raw ECG recordings. However, training CNNs for ECG classification often requires a large number of annotated samples, which are expensive to acquire. In this work, we tackle this problem by using transfer learning. First, we pretrain CNNs on the largest public data set of continuous raw ECG signals. Next, we finetune the networks on a small data set for classification of Atrial Fibrillation, which is the most common heart arrhythmia. We show that pretraining improves the performance of CNNs on the target task by up to [Formula: see text], effectively reducing the number of annotations required to achieve the same performance as CNNs that are not pretrained. We investigate both supervised as well as unsupervised pretraining approaches, which we believe will increase in relevance, since they do not rely on the expensive ECG annotations. The code is available on GitHub at https://github.com/kweimann/ecg-transfer-learning .


Assuntos
Arritmias Cardíacas/diagnóstico por imagem , Fibrilação Atrial/diagnóstico por imagem , Eletrocardiografia/normas , Monitorização Fisiológica , Algoritmos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/patologia , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/patologia , Eletrocardiografia/classificação , Humanos , Aprendizado de Máquina , Médicos , Tecnologia de Sensoriamento Remoto
10.
J R Soc Interface ; 15(149): 20180595, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30958230

RESUMO

One of the most widely recognized features of biological systems is their modularity. The modules that constitute biological systems are said to be redeployed and combined across several conditions, thus acting as building blocks. In this work, we analyse to what extent are these building blocks reusable as compared with those found in randomized versions of a system. We develop a notion of decompositions of systems into phenotypic building blocks, which allows them to overlap while maximizing the number of times a building block is reused across several conditions. Different biological systems present building blocks whose reusability ranges from single use (e.g. condition specific) to constitutive, although their average reusability is not always higher than random equivalents of the system. These decompositions reveal a distinct distribution of building block sizes in real biological systems. This distribution stems, in part, from the peculiar usage pattern of the elements of biological systems, and constitutes a new angle to study the evolution of modularity.


Assuntos
Evolução Biológica , Modelos Biológicos
11.
BMC Bioinformatics ; 18(1): 160, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28274197

RESUMO

BACKGROUND: High-throughput proteomics techniques, such as mass spectrometry (MS)-based approaches, produce very high-dimensional data-sets. In a clinical setting one is often interested in how mass spectra differ between patients of different classes, for example spectra from healthy patients vs. spectra from patients having a particular disease. Machine learning algorithms are needed to (a) identify these discriminating features and (b) classify unknown spectra based on this feature set. Since the acquired data is usually noisy, the algorithms should be robust against noise and outliers, while the identified feature set should be as small as possible. RESULTS: We present a new algorithm, Sparse Proteomics Analysis (SPA), based on the theory of compressed sensing that allows us to identify a minimal discriminating set of features from mass spectrometry data-sets. We show (1) how our method performs on artificial and real-world data-sets, (2) that its performance is competitive with standard (and widely used) algorithms for analyzing proteomics data, and (3) that it is robust against random and systematic noise. We further demonstrate the applicability of our algorithm to two previously published clinical data-sets.


Assuntos
Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Algoritmos , Estudos de Casos e Controles , Simulação por Computador , Bases de Dados Factuais , Humanos , Aprendizado de Máquina , Modelos Teóricos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Reprodutibilidade dos Testes
12.
PLoS One ; 7(7): e40656, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815782

RESUMO

BACKGROUND: Proteases play an essential part in a variety of biological processes. Besides their importance under healthy conditions they are also known to have a crucial role in complex diseases like cancer. In recent years, it has been shown that not only the fragments produced by proteases but also their dynamics, especially ex vivo, can serve as biomarkers. But so far, only a few approaches were taken to explicitly model the dynamics of proteolysis in the context of mass spectrometry. RESULTS: We introduce a new concept to model proteolytic processes, the degradation graph. The degradation graph is an extension of the cleavage graph, a data structure to reconstruct and visualize the proteolytic process. In contrast to previous approaches we extended the model to incorporate endoproteolytic processes and present a method to construct a degradation graph from mass spectrometry time series data. Based on a degradation graph and the intensities extracted from the mass spectra it is possible to estimate reaction rates of the underlying processes. We further suggest a score to rate different degradation graphs in their ability to explain the observed data. This score is used in an iterative heuristic to improve the structure of the initially constructed degradation graph. CONCLUSION: We show that the proposed method is able to recover all degraded and generated peptides, the underlying reactions, and the reaction rates of proteolytic processes based on mass spectrometry time series data. We use simulated and real data to demonstrate that a given process can be reconstructed even in the presence of extensive noise, isobaric signals and false identifications. While the model is currently only validated on peptide data it is also applicable to proteins, as long as the necessary time series data can be produced.


Assuntos
Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Modelos Biológicos , Proteólise , Simulação por Computador , Fibrinopeptídeo A/química , Fibrinopeptídeo A/metabolismo , Humanos , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA