Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470124

RESUMO

Survival and reproduction of endotherms depend on their ability to balance energy and water exchange with their environment, avoiding lethal deficits and maximising gains for growth and reproduction. At high environmental temperatures, diurnal endotherms maintain body temperature (Tb) below lethal limits via physiological and behavioural adjustments. Accurate models of these processes are crucial for predicting effects of climate variability on avifauna. We evaluated the performance of a biophysical model (NicheMapR) for predicting evaporative water loss (EWL), resting metabolic rate (RMR) and Tb at environmental temperatures approaching or exceeding normothermic Tb for three arid-zone birds: southern yellow-billed hornbill (Tockus leucomelas), southern pied babbler (Turdoides bicolor) and southern fiscal (Lanius collaris). We simulated metabolic chamber conditions and compared model outputs with thermal physiology data collected at air temperatures (Tair) between 10 and 50°C. Additionally, we determined the minimum data needed to accurately model diurnal birds' thermoregulatory responses to Tair using sensitivity analyses. Predicted EWL, metabolic rate and Tb corresponded tightly with observed values across Tair, with only minor discrepancies for EWL in two species at Tair≈35°C. Importantly, the model captured responses at Tair=30-40°C, a range spanning threshold values for sublethal fitness costs associated with sustained hot weather in arid-zone birds. Our findings confirm how taxon-specific parameters together with biologically relevant morphological data can accurately model avian thermoregulatory responses to heat. Biophysical models can be used as a non-invasive way to predict species' sensitivity to climate, accounting for organismal (e.g. physiology) and environmental factors (e.g. microclimates).


Assuntos
Temperatura Alta , Passeriformes , Animais , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Passeriformes/fisiologia , Clima Desértico
3.
Nat Commun ; 14(1): 211, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639376

RESUMO

The world's warm deserts are predicted to experience disproportionately large temperature increases due to climate change, yet the impacts on global desert biodiversity remain poorly understood. Because species in warm deserts live close to their physiological limits, additional warming may induce local extinctions. Here, we combine climate change projections with biophysical models and species distributions to predict physiological impacts of climate change on desert birds globally. Our results show heterogeneous impacts between and within warm deserts. Moreover, spatial patterns of physiological impacts do not simply mirror air temperature changes. Climate change refugia, defined as warm desert areas with high avian diversity and low predicted physiological impacts, are predicted to persist in varying extents in different desert realms. Only a small proportion (<20%) of refugia fall within existing protected areas. Our analysis highlights the need to increase protection of refugial areas within the world's warm deserts to protect species from climate change.


Assuntos
Aves , Mudança Climática , Animais , Aves/fisiologia , Biodiversidade , Temperatura , Ecossistema , Clima Desértico
5.
Conserv Physiol ; 8(1): coaa048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523698

RESUMO

Intense heat waves are occurring more frequently, with concomitant increases in the risk of catastrophic avian mortality events via lethal dehydration or hyperthermia. We quantified the risks of lethal hyperthermia and dehydration for 10 Australian arid-zone avifauna species during the 21st century, by synthesizing thermal physiology data on evaporative water losses and heat tolerance limits. We evaluated risks of lethal hyperthermia or exceedance of dehydration tolerance limits in the absence of drinking during the hottest part of the day under recent climatic conditions, compared to those predicted for the end of this century across Australia. Increases in mortality risk via lethal dehydration and hyperthermia vary among the species modelled here but will generally increase greatly, particularly in smaller species (~10-42 g) and those inhabiting the far western parts of the continent. By 2100 CE, zebra finches' potential exposure to acute lethal dehydration risk will reach ~ 100 d y-1 in the far northwest of Australia and will exceed 20 d y-1 over > 50% of this species' current range. Risks of dehydration and hyperthermia will remain much lower for large non-passerines such as crested pigeons. Risks of lethal hyperthermia will also increase substantially for smaller species, particularly if they are forced to visit exposed water sources at very high air temperatures to avoid dehydration. An analysis of atlas data for zebra finches suggests that population declines associated with very hot conditions are already occurring in the hottest areas. Our findings suggest that the likelihood of persistence within current species ranges, and the potential for range shifts, will become increasingly constrained by temperature and access to drinking water. Our model adds to an increasing body of literature suggesting that arid environments globally will experience considerable losses of avifauna and biodiversity under unmitigated climate change scenarios.

6.
Proc Natl Acad Sci U S A ; 116(28): 14065-14070, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235571

RESUMO

Birds inhabiting hot, arid regions are among the terrestrial organisms most vulnerable to climate change. The potential for increasingly frequent and intense heat waves to cause lethal dehydration and hyperthermia is well documented, but the consequences of sublethal fitness costs associated with chronic exposure to sustained hot weather remain unclear. Using data for species occurring in southern Africa's Kalahari Desert, we mapped exposure to acute lethal risks and chronic sublethal fitness costs under past, present, and future climates. For inactive birds in shaded microsites, the risks of lethal dehydration and hyperthermia will remain low during the 21st century. In contrast, exposure to conditions associated with chronic, sublethal costs related to progressive body mass loss, reduced nestling growth rates, or increased breeding failure will expand dramatically. For example, by the 2080s the region will experience 10-20 consecutive days per year on which Southern Pied Babblers (Turdoides bicolor) will lose ∼4% of body mass per day, conditions under which this species' persistence will be extremely unlikely. Similarly, exposure to air temperature maxima associated with delayed fledging, reduced fledgling size, and breeding failure will increase several-fold in Southern Yellow-billed Hornbills (Tockus leucomelas) and Southern Fiscals (Lanius collaris). Our analysis reveals that sublethal costs of chronic heat exposure are likely to drive large declines in avian diversity in the southern African arid zone by the end of the century.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Mudança Climática , Clima Desértico/efeitos adversos , Passeriformes/fisiologia , África Austral , Animais , Botsuana , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA