RESUMO
BACKGROUND: Host-associated microbes are major determinants of the host phenotypes. In the present study, we used dairy cows with different scores of susceptibility to mastitis with the aim to explore the relationships between microbiota composition and different factors in various body sites throughout lactation as well as the intra- and inter-animal microbial sharing. RESULTS: Microbiotas from the mouth, nose, vagina and milk of 45 lactating dairy cows were characterized by metataxonomics at four time points during the first lactation, from 1-week pre-partum to 7 months post-partum. Each site harbored a specific community that changed with time, likely reflecting physiological changes in the transition period and changes in diet and housing. Importantly, we found a significant number of microbes shared among different anatomical sites within each animal. This was between nearby anatomic sites, with up to 32% of the total number of Amplicon Sequence Variants (ASVs) of the oral microbiota shared with the nasal microbiota but also between distant ones (e.g. milk with nasal and vaginal microbiotas). In contrast, the share of microbes between animals was limited (< 7% of ASVs shared by more than 50% of the herd for a given site and time point). The latter widely shared ASVs were mainly found in the oral and nasal microbiotas. These results thus indicate that despite a common environment and diet, each animal hosted a specific set of bacteria, supporting a tight interplay between each animal and its microbiota. The score of susceptibility to mastitis was slightly but significantly related to the microbiota associated to milk suggesting a link between host genetics and microbiota. CONCLUSIONS: This work highlights an important sharing of microbes between relevant microbiotas involved in health and production at the animal level, whereas the presence of common microbes was limited between animals of the herd. This suggests a host regulation of body-associated microbiotas that seems to be differently expressed depending on the body site, as suggested by changes in the milk microbiota that were associated to genotypes of susceptibility to mastitis.
RESUMO
Post-operative pain and inflammation are normal physiological reactions to caesarean section. Their management in cattle have rarely been investigated. This surgical procedure negatively affects reproductive function with, for example, a reduction in fertility resulting in an increase in calving interval. In this multicenter clinical trial, the objective was to evaluate the impact on reproductive performance of meloxicam injected before caesarean section to manage post-operative pain and inflammation. Meloxicam is a non-steroidal anti-inflammatory drug. One hundred and twenty-seven Charolais heifers (n = 127) were recruited from 47 farms in six French veterinary practices in the Burgundy region. The heifers underwent a non-elective standardized caesarean section operation. Heifers were randomly assigned to one of two groups: meloxicam (n = 66), intravenous meloxicam injection before surgery, or control (n = 61). Reproductive performance and health information were recorded from the time of the caesarean section to the next calving or to culling. In our study, meloxicam administration before caesarean section had no effect on the incidence of retained placenta (18.2% of treated vs 25.0% of control cows, p = 0.35). The pregnancy rate was higher in treated than in control cows (83.1% vs 67.8%, p = 0.04 after multivariate analysis) and a survival analysis showed that the median calving interval was 35 days shorter in the meloxicam (t50% = 417 days) compared to the control group (t50% = 452 days, p = 0.05). A trend was also observed for culling rate to be lower in treated (4.7%) compared to control cows (13.3%, p = 0.09). In conclusion, this study suggests that there is a beneficial effect of meloxicam administration before caesarean section on reproductive performance in Charolais heifers.
Assuntos
Doenças dos Bovinos , Cesárea , Animais , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Cesárea/veterinária , Feminino , Inflamação/tratamento farmacológico , Inflamação/veterinária , Meloxicam , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/veterinária , Gravidez , ReproduçãoRESUMO
Forkhead Box L2 (FOXL2) is a member of the FOXL class of transcription factors, which are essential for ovarian differentiation and function. In the endometrium, FOXL2 is also thought to be important in cattle; however, it is not clear how its expression is regulated. The maternal recognition of pregnancy signal in cattle, interferon-Tau, does not regulate FOXL2 expression. Therefore, in the present study, we examined whether the ovarian steroid hormones that orchestrate implantation regulate FOXL2 gene expression in ruminants. In sheep, we confirmed that FOXL2 mRNA and protein was expressed in the endometrium across the oestrous cycle (day 4 to day 15 post-oestrus). Similar to the bovine endometrium, ovine FOXL2 endometrial expression was low during the luteal phase of the oestrous cycle (4 to 12 days post-oestrus) and at implantation (15 days post-oestrus) while mRNA and protein expression significantly increased during the luteolytic phase (day 15 post-oestrus in cycle). In pregnant ewes, inhibition of progesterone production by trilostane during the day 5 to 16 period prevented the rise in progesterone concentrations and led to a significant increase of FOXL2 expression in caruncles compared with the control group (1.4-fold, p < 0.05). Ovariectomized ewes or cows that were supplemented with exogenous progesterone for 12 days or 6 days, respectively, had lower endometrial FOXL2 expression compared with control ovariectomized females (sheep, mRNA, 1.8-fold; protein, 2.4-fold; cattle; mRNA, 2.2-fold; p < 0.05). Exogenous oestradiol treatments for 12 days in sheep or 2 days in cattle did not affect FOXL2 endometrial expression compared with control ovariectomized females, except at the protein level in both endometrial areas in the sheep. Moreover, treating bovine endometrial explants with exogenous progesterone for 48h reduced FOXL2 expression. Using in vitro assays with COS7 cells we also demonstrated that progesterone regulates the FOXL2 promoter activity through the progesterone receptor. Collectively, our findings imply that endometrial FOXL2 is, as a direct target of progesterone, involved in early pregnancy and implantation.
Assuntos
Endométrio/metabolismo , Ciclo Estral/fisiologia , Proteína Forkhead Box L2/biossíntese , Regulação da Expressão Gênica/fisiologia , Progesterona/metabolismo , Animais , Células COS , Bovinos , Chlorocebus aethiops , Feminino , Gravidez/metabolismo , OvinosRESUMO
In terms of contribution to pregnancy, the mother not only produces gametes, but also hosts gestation, whose progression in the uterus is conditioned by early events during implantation. In ruminants, this period is associated with elongation of the extra-embryonic tissues, gastrulation of the embryonic disk and cross-talk with the endometrium. Recent data have prompted the need for accurate staging of the bovine conceptus and shown that asynchrony between elongation and gastrulation processes may account for pregnancy failure. Data mining of endometrial gene signatures has allowed the identification of molecular pathways and new factors regulated by the conceptus (e.g. FOXL2, SOCS6). Interferon-tau has been recognised to be the major signal of pregnancy recognition, but prostaglandins and lysophospholipids have also been demonstrated to be critical players at the conceptus-endometrium interface. Interestingly, up-regulation of interferon-regulated gene expression has been identified in circulating immune cells during implantation, making these factors a potential source of non-invasive biomarkers for early pregnancy. Distinct endometrial responses have been shown to be elicited by embryos produced by artificial insemination, in vitro fertilisation or somatic cell nuclear transfer. These findings have led to the concept that endometrium is an early biosensor of embryo quality. This biological property first demonstrated in cattle has been recently extended and associated with embryo selection in humans. Hence, compromised or suboptimal endometrial quality can subtly or deeply affect embryo development, with visible and sometimes severe consequences for placentation, foetal development, pregnancy outcome and the long-term health of the offspring.
Assuntos
Aborto Espontâneo/diagnóstico , Biomarcadores/metabolismo , Endométrio/imunologia , Interferon Tipo I/metabolismo , Proteínas da Gravidez/metabolismo , Aborto Espontâneo/imunologia , Animais , Bovinos , Implantação do Embrião , Feminino , Humanos , Troca Materno-Fetal , Mães , Gravidez , Resultado da Gravidez , RuminantesRESUMO
BACKGROUND: Progesterone (P4) may modulate oviductal functions to promote early embryo development in cattle. In addition to its nuclear receptor (PR), P4 may mediate its actions through P4 receptor membrane component 1 (PGRMC1) and its relative, PGRMC2. Two successive experiments were undertaken to characterise the expression of PR, PGRMC1 and PGRMC2 in the bovine oviduct during the post-ovulation period, and to relate their expression to the presence of an embryo, the proximity of the CL and to the region of the oviduct. METHODS: In the first experiment (Exp. I), whole oviduct sections were collected from Holstein cows at Day 1.5, Day 4 and Day 5 post-ovulation (n = 2 cows per stage). The expression of PR, PGRMC1 and PGRMC2 was studied in the ampulla and isthmus by RT-PCR, western-blot and immunohistochemistry. In Exp. II, oviduct epithelial cells were collected from cyclic and pregnant Charolais cows (n = 4 cows per status) at Day 3.5 post-ovulation and mRNA expression of PR, PGRMC1 and PGRMC2 was examined in the ampulla and isthmus by real-time quantitative PCR. RESULTS: In Exp. I, PR, PGRMC1 and PGRMC2 were expressed in all oviduct samples. PGRMC1 was mainly localised in the luminal epithelium whereas PR and PGRMC2 were localised in the epithelium as well as in the muscle and stroma layers of the oviduct. The expression was primarily nuclear for PR, primarily cytoplasmic for PGRMC1 and both nuclear and cytoplasmic for PGRMC2. In Exp. II, mRNA levels for PR, PGRMC1 and PGRMC2 were not affected by either the pregnancy status or the side relative to the CL. However, the expression of PR and PGRMC2 varied significantly with the region of the oviduct: PR was more highly expressed in the isthmus whereas PGRMC2 was more highly expressed in the ampulla. CONCLUSIONS: This is the first evidence of PGRMC2 expression in the bovine oviduct. Our findings suggest that P4 regulates the functions of the bovine oviduct in a region-specific manner and through both classical and non classical pathways during the post-ovulation period.