Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37347462

RESUMO

Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.


Assuntos
Interferon Tipo I , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Chlorocebus aethiops , Humanos , Células Vero , Autoanticorpos , Anticorpos Antivirais , Interferon-alfa
2.
Emerg Microbes Infect ; 12(1): 2156815, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36495563

RESUMO

Usutu (USUV) and West Nile (WNV) viruses are two closely related Flavivirus belonging to Japanese encephalitis virus serogroup. Evidence of increased circulation of these two arboviruses now exist in Europe. Neurological disorders are reported in humans mainly for WNV, despite the fact that the interaction and effects of viral infections on the neurovasculature are poorly described, notably for USUV. Using a human in vitro blood-brain barrier (BBB) and a mouse model, this study characterizes and compares the cerebral endothelial cell permissiveness, innate immunity and inflammatory responses and immune cell recruitment during infection by USUV and WNV. Both viruses are able to infect and cross the human BBB but with different consequences. We observed that WNV infects BBB cells resulting in significant endothelium impairment, potent neuroinflammation and immune cell recruitment, in agreement with previous studies. USUV, despite being able to infect BBB cells with higher replication rate than WNV, does not strongly affect endothelium integrity. Importantly, USUV also induces neuroinflammation, immune cell recruitment such as T lymphocytes, monocytes and dendritic cells (DCs) and was able to infect dendritic cells (DCs) more efficiently compared to WNV, with greater propensity for BBB recruitment. DCs may have differential roles for neuroinvasion of the two related viruses.


Assuntos
Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Camundongos , Humanos , Doenças Neuroinflamatórias , Barreira Hematoencefálica
3.
Microorganisms ; 10(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296292

RESUMO

Usutu virus (USUV) and West Nile virus (WNV) are phylogenetically closely related arboviruses. These viruses mainly follow an enzootic cycle involving mosquitoes and birds, but they occasionally infect humans and other mammals, inducing neurotropic disorders. Since the discovery of USUV, only two human cases have been reported in Africa, including one in Burkina Faso in 2004. Since then, no studies have been conducted to measure the extent of the circulation of this virus in Burkina Faso, and no study regarding the circulation of WNV has been conducted. Our study aimed to determine the seroprevalence of USUV and WNV in blood donations and in animals (horses, dogs, chickens and pigeons) and to perform molecular screening in patients with febrile fever and in Culex quinquefasciatus and Aedes aegypti mosquitoes. The prevalence of USUV and WNV was studied by serological (ELISA and microneutralization tests) and molecular analyses (RT-qPCR) of mosquito, dog, domestic bird, horse, and human samples in Burkina Faso between 2019 and 2021. We detected a very active transmission of both viruses in Burkina Faso. WNV and USUV seroprevalence is particularly high in humans (19.16% and 14.17%, respectively) and horses (17.28% and 6.17%). Molecular screening did not detect WNV or USUV in the mosquito or human samples tested. Our study shows an active spread of USUV and WNV in Burkina Faso, especially for WNV. This study highlights the value of developing surveillance programs to better prevent, detect, and alert people to USUV and WNV circulation in both primary and incidental hosts.

4.
Euro Surveill ; 27(25)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748300

RESUMO

BackgroundWest Nile virus (WNV) and Usutu virus (USUV), two closely related flaviviruses, mainly follow an enzootic cycle involving mosquitoes and birds, but also infect humans and other mammals. Since 2010, their epidemiological situation may have shifted from irregular epidemics to endemicity in several European regions; this requires confirmation, as it could have implications for risk assessment and surveillance strategies.AimTo explore the seroprevalence in animals and humans and potential endemicity of WNV and USUV in Southern France, given a long history of WNV outbreaks and the only severe human USUV case in France in this region.MethodsWe evaluated the prevalence of WNV and USUV in a repeated cross-sectional study by serological and molecular analyses of human, dog, horse, bird and mosquito samples in the Camargue area, including the city of Montpellier, between 2016 and 2020.ResultsWe observed the active transmission of both viruses and higher USUV prevalence in humans, dogs, birds and mosquitoes, while WNV prevalence was higher in horses. In 500 human samples, 15 were positive for USUV and 6 for WNV. Genetic data showed that the same lineages, WNV lineage 1a and USUV lineage Africa 3, were found in mosquitoes in 2015, 2018 and 2020.ConclusionThese findings support existing literature suggesting endemisation in the study region and contribute to a better understanding of USUV and WNV circulation in Southern France. Our study underlines the importance of a One Health approach for the surveillance of these viruses.


Assuntos
Culicidae , Infecções por Flavivirus , Saúde Única , Febre do Nilo Ocidental , Animais , Aves/virologia , Estudos Transversais , Culicidae/virologia , Cães/virologia , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , França/epidemiologia , Cavalos/virologia , Humanos , Estudos Soroepidemiológicos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética
5.
Front Immunol ; 13: 862053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529884

RESUMO

To gain access to the brain, a so-called immune-privileged organ due to its physical separation from the blood stream, pathogens and particularly viruses have been selected throughout evolution for their use of specific mechanisms. They can enter the central nervous system through direct infection of nerves or cerebral barriers or through cell-mediated transport. Indeed, peripheral lymphoid and myeloid immune cells can interact with the blood-brain and the blood-cerebrospinal fluid barriers and allow viral brain access using the "Trojan horse" mechanism. Among immune cells, at the frontier between innate and adaptive immune responses, dendritic cells (DCs) can be pathogen carriers, regulate or exacerbate antiviral responses and neuroinflammation, and therefore be involved in viral transmission and spread. In this review, we highlight an important contribution of DCs in the development and the consequences of viral brain infections.


Assuntos
Células Dendríticas , Viroses , Encéfalo , Sistema Nervoso Central , Humanos , Células Mieloides
6.
Viruses ; 14(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35458486

RESUMO

Among emerging arthropod-borne viruses (arbovirus), West Nile virus (WNV) is a flavivirus that can be associated with severe neuroinvasive infections in humans. In 2018, the European WNV epidemic resulted in over 2000 cases, representing the most important arboviral epidemic in the European continent. Characterization of inflammation and neuronal biomarkers released during WNV infection, especially in the context of neuronal impairments, could provide insight into the development of predictive tools that could be beneficial for patient outcomes. We first analyzed the inflammatory signature in the serum of WNV-infected mice and found increased concentrations of several inflammatory cytokines. We next analyzed serum and cerebrospinal-fluid (CSF) samples from a cohort of patients infected by WNV between 2018 and 2019 in Hungary to quantify a large panel of inflammatory cytokines and neurological factors. We found higher levels of inflammatory cytokines (e.g., IL4, IL6, and IL10) and neuronal factors (e.g., BDNF, GFAP, MIF, TDP-43) in the sera of WNV-infected patients with neuroinvasive disease. Furthermore, the serum inflammatory profile of these patients persisted for several weeks after initial infection, potentially leading to long-term sequelae and having a deleterious effect on brain neurovasculature. This work suggests that early signs of increased serum concentrations of inflammatory cytokines and neuronal factors could be a signature underlying the development of severe neurological impairments. Biomarkers could play an important role in patient monitoring to improve care and prevent undesirable outcomes.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Biomarcadores , Citocinas , Humanos , Camundongos , Doenças Neuroinflamatórias/virologia , Vírus do Nilo Ocidental/fisiologia
7.
Front Immunol ; 12: 697329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386007

RESUMO

Various neurological symptoms have been associated to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection including headache, fever, anosmia, ageusia, but also, encephalitis, Guillain-Barre syndrome and ischemic stroke. Responsible for the current coronavirus disease (COVID-19) pandemic, SARS-CoV-2 may access and affect the central nervous system (CNS) by several pathways such as axonal retrograde transport or through interaction with the blood-brain barrier (BBB) or blood-cerebrospinal fluid (CSF) barrier. Here, we explored the molecular and cellular effects of direct SARS-CoV-2 infection of human BBB cells. We observed low replication of SARS-CoV-2 that was accompanied by very moderate inflammatory response. Using a human in vitro BBB model, we also described low replication levels without strong inflammatory response or modulation of endothelium integrity. Finally, using serum samples from COVID-19 patients, we highlighted strong concentrations of pro-inflammatory factors that did not perturb BBB integrity after short term exposure. Altogether, our results show that the main mechanism of brain access following SARS-CoV-2 infection does not seem to be directed by brain infection through endothelial cells.


Assuntos
Barreira Hematoencefálica/virologia , Encéfalo/virologia , Células Endoteliais/virologia , SARS-CoV-2/crescimento & desenvolvimento , Replicação Viral/fisiologia , Animais , COVID-19/patologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Células Vero
9.
J Neuroinflammation ; 18(1): 11, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407600

RESUMO

BACKGROUND: Usutu virus (USUV) is an emerging neurotropic arthropod-borne virus recently involved in massive die offs of wild birds predominantly reported in Europe. Although primarily asymptomatic or presenting mild clinical signs, humans infected by USUV can develop neuroinvasive pathologies (including encephalitis and meningoencephalitis). Similar to other flaviviruses, such as West Nile virus, USUV is capable of reaching the central nervous system. However, the neuropathogenesis of USUV is still poorly understood, and the virulence of the specific USUV lineages is currently unknown. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages circulating at the same time and in the same location. METHODS: The aim of this work was to determine the neurovirulence of isolates from the six main lineages circulating in Europe using mouse model and several neuronal cell lines (neurons, microglia, pericytes, brain endothelial cells, astrocytes, and in vitro Blood-Brain Barrier model). RESULTS: Our results indicate that all strains are neurotropic but have different virulence profiles. The Europe 2 strain, previously described as being involved in several clinical cases, induced the shortest survival time and highest mortality in vivo and appeared to be more virulent and persistent in microglial, astrocytes, and brain endothelial cells, while also inducing an atypical cytopathic effect. Moreover, an amino acid substitution (D3425E) was specifically identified in the RNA-dependent RNA polymerase domain of the NS5 protein of this lineage. CONCLUSIONS: Altogether, these data show a broad neurotropism for USUV in the central nervous system with lineage-dependent virulence. Our results will help to better understand the biological and epidemiological diversity of USUV infection.


Assuntos
Flavivirus/fisiologia , Flavivirus/patogenicidade , Imunocompetência/fisiologia , Neurônios/fisiologia , Neurônios/virologia , Animais , Animais Recém-Nascidos , Aves , Linhagem Celular Transformada , Chlorocebus aethiops , Flavivirus/isolamento & purificação , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/epidemiologia , Humanos , Camundongos , Células Vero , Virulência/fisiologia
10.
Pathogens ; 9(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266071

RESUMO

West Nile virus (WNV) and Usutu virus (USUV) are zoonotic arboviruses. These flaviviruses are mainly maintained in the environment through an enzootic cycle involving mosquitoes and birds. Horses and humans are incidental, dead-end hosts, but can develop severe neurological disorders. Nevertheless, there is little data regarding the involvement of other mammals in the epidemiology of these arboviruses. In this study, we performed a serosurvey to assess exposure to these viruses in captive birds and mammals in a zoo situated in the south of France, an area described for the circulation of these two viruses. A total of 411 samples comprising of 70 species were collected over 16 years from 2003 to 2019. The samples were first tested by a competitive enzyme-linked immunosorbent assay. The positive sera were then tested using virus-specific microneutralization tests against USUV and WNV. USUV seroprevalence in birds was 10 times higher than that of WNV (14.59% versus 1.46%, respectively). Among birds, greater rhea (Rhea Americana) and common peafowl (Pavo cristatus) exhibited the highest USUV seroprevalence. Infections occurred mainly between 2016-2018 corresponding to a period of high circulation of these viruses in Europe. In mammalian species, antibodies against WNV were detected in one dama gazelle (Nanger dama) whereas serological evidence of USUV infection was observed in several Canidae, especially in African wild dogs (Lycaon pictus). Our study helps to better understand the exposure of captive species to WNV and USUV and to identify potential host species to include in surveillance programs in zoos.

11.
mBio ; 11(4)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753493

RESUMO

The blood-brain barrier (BBB) largely prevents toxins and pathogens from accessing the brain. Some viruses have the ability to cross this barrier and replicate in the central nervous system (CNS). Zika virus (ZIKV) was responsible in 2015 to 2016 for a major epidemic in South America and was associated in some cases with neurological impairments. Here, we characterized some of the mechanisms behind its neuroinvasion using an innovative in vitro human BBB model. ZIKV efficiently replicated, was released on the BBB parenchyma side, and triggered subtle modulation of BBB integrity as well as an upregulation of inflammatory and cell adhesion molecules (CAMs), which in turn favored leukocyte recruitment. Finally, we showed that ZIKV-infected mouse models displayed similar CAM upregulation and that soluble CAMs were increased in plasma samples from ZIKV-infected patients. Our observations suggest a complex interplay between ZIKV and the BBB, which may trigger local inflammation, leukocyte recruitment, and possible cerebral vasculature impairment.IMPORTANCE Zika virus (ZIKV) can be associated with neurological impairment in children and adults. To reach the central nervous system, viruses have to cross the blood-brain barrier (BBB), a multicellular system allowing a tight separation between the bloodstream and the brain. Here, we show that ZIKV infects cells of the BBB and triggers a subtle change in its permeability. Moreover, ZIKV infection leads to the production of inflammatory molecules known to modulate BBB integrity and participate in immune cell attraction. The virus also led to the upregulation of cellular adhesion molecules (CAMs), which in turn favored immune cell binding to the BBB and potentially increased infiltration into the brain. These results were also observed in a mouse model of ZIKV infection. Furthermore, plasma samples from ZIKV-infected patients displayed an increase in CAMs, suggesting that this mechanism could be involved in neuroinflammation triggered by ZIKV.


Assuntos
Barreira Hematoencefálica/imunologia , Moléculas de Adesão Celular/genética , Inflamação/virologia , Leucócitos/imunologia , Infecção por Zika virus/imunologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Adesão Celular/genética , Células Cultivadas , Chlorocebus aethiops , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Humanos , Camundongos , Regulação para Cima , Células Vero , Zika virus , Infecção por Zika virus/patologia
12.
13.
PLoS Negl Trop Dis ; 11(9): e0005913, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28873445

RESUMO

In the last decade, the number of emerging Flaviviruses described worldwide has increased considerably. Among them Zika virus (ZIKV) and Usutu virus (USUV) are African mosquito-borne viruses that recently emerged. Recently, ZIKV has been intensely studied due to major outbreaks associated with neonatal death and birth defects, as well as neurological symptoms. USUV pathogenesis remains largely unexplored, despite significant human and veterinary associated disorders. Circulation of USUV in Africa was documented more than 50 years ago, and it emerged in Europe two decades ago, causing massive bird mortality. More recently, USUV has been described to be associated with neurological disorders in humans such as encephalitis and meningoencephalitis, highlighting USUV as a potential health threat. The aim of this study was to evaluate the ability of USUV to infect neuronal cells. Our results indicate that USUV efficiently infects neurons, astrocytes, microglia and IPSc-derived human neuronal stem cells. When compared to ZIKV, USUV led to a higher infection rate, viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology related to USUV infection in order to anticipate the potential threat of USUV emergence.


Assuntos
Astrócitos/virologia , Vírus da Encefalite Japonesa (Subgrupo)/fisiologia , Células-Tronco Neurais/virologia , Neuroglia/virologia , Neurônios/virologia , Tropismo Viral , Animais , Astrócitos/fisiologia , Encéfalo/virologia , Células Cultivadas , Vírus da Encefalite Japonesa (Subgrupo)/crescimento & desenvolvimento , Camundongos , Células-Tronco Neurais/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Zika virus/crescimento & desenvolvimento , Zika virus/fisiologia
14.
EBioMedicine ; 12: 161-169, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27688094

RESUMO

The recent Zika virus (ZIKV) epidemic has highlighted the poor knowledge on its physiopathology. Recent studies showed that ZIKV of the Asian lineage, responsible for this international outbreak, causes neuropathology in vitro and in vivo. However, two African lineages exist and the virus is currently found circulating in Africa. The original African strain was also suggested to be neurovirulent but its laboratory usage has been criticized due to its multiple passages. In this study, we compared the French Polynesian (Asian) ZIKV strain to an African strain isolated in Central African Republic and show a difference in infectivity and cellular response between both strains in human neural stem cells and astrocytes. Consistently, this African strain led to a higher infection rate and viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology and predict neurological impairment associated with African ZIKV.


Assuntos
Tropismo Viral , Replicação Viral , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Astrócitos/virologia , Sobrevivência Celular , Humanos , Células-Tronco Neurais/virologia , Filogenia , Células Vero , Zika virus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA