Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 64(12): 1972-1979, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37770111

RESUMO

This series of studies characterized [18F]T-008, a PET radiotracer for imaging cholesterol 24-hydroxylase (CH24H), in healthy volunteers (ClinicalTrials.gov identifier NCT02497235). Assessments included radiation dosimetry, kinetic modeling, test-retest variability (TRT) evaluation, and a dose occupancy evaluation using soticlestat, a selective CH24H inhibitor. Soticlestat is currently in phase 3 development for the treatment of seizures in Dravet syndrome and Lennox-Gastaut syndrome. Methods: In the dosimetry study, 5 participants (3 men) underwent serial whole-body scans to estimate organ-absorbed doses and effective doses of [18F]T-008 using OLINDA/EXM 1.1. For the kinetic modeling and TRT study, 6 participants (all men) underwent two 210-min dynamic [18F]T-008 PET scans with arterial blood sampling. The regional total volume of distribution was estimated using a 1-tissue-compartment model, a 2-tissue-compartment model, and Logan graphic analysis. In the dose occupancy study, 11 participants (all men) underwent 120-min scans at baseline and 2 time points (peak and trough) after receiving single oral doses of soticlestat (50-600 mg). The relationship between effect-site soticlestat concentration and brain occupancy was evaluated with a specially developed pharmacokinetic model and a saturable maximal occupancy model. Results: The estimated mean whole-body effective dose was 0.0292 mSv/MBq (SD, 0.00147 mSv/MBq). [18F]T-008 entered the brain rapidly, with a distribution consistent with known CH24H distribution densities. The 2-tissue-compartment model and Logan graphic analysis best described the tracer kinetics. The mean TRT for estimating total volume of distribution was 7%-15%. Single doses of soticlestat in the range 50-600 mg resulted in occupancies of 64%-96% at 2 h and 11%-79% at 24 h. The estimated half-maximal effect-site concentration of soticlestat was 5.52 ng/mL. Conclusion: [18F]T-008 is a suitable PET radiotracer for quantitatively analyzing CH24H in the human brain. Using [18F]T-008 and PET, we demonstrated that soticlestat was brain-penetrant and established target engagement by displacing [18F]T-008 in a dose-dependent manner in the brain.


Assuntos
Tomografia por Emissão de Pósitrons , Radiometria , Humanos , Masculino , Colesterol 24-Hidroxilase , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Feminino
2.
Eur J Med Chem ; 240: 114612, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35863274

RESUMO

Cholesterol 24-hydroxylase (CH24H, CYP46A1) is a cytochrome P450 family enzyme that maintains the homeostasis of brain cholesterol. Soticlestat, a potent and selective CH24H inhibitor, is in development as a therapeutic agent for Dravet syndrome and Lennox-Gastaut syndrome. Herein, we report the discovery of aryl-piperidine derivatives as potent and selective CH24H positron emission tomography (PET) tracers which can be used for dose guidance of a clinical CH24H inhibitor and as a diagnostic tool for CH24H-related pathology. Starting from compound 1 (IC50 = 16 nM, logD = 1.7), which was reported as a CH24H inhibitor with lower lipophilicity, a18F-labeling site (3-fluoroazetidine) was incorporated by structure-based drug design (SBDD) utilizing the co-crystal structure of a compound 1 analog. Subsequent optimization to adjust key parameters for PET tracers, such as potency, lipophilicity, brain penetration, and unbound plasma protein binding, enabled compounds 3f (IC50 = 8.8 nM) and 3g (IC50 = 8.7 nM) as PET imaging candidates. Selectivity of these compounds for CH24H was validated by a brain distribution study using CH24H-WT and KO mice. In non-human primate PET imaging, [18F]3f and [18F]3g showed similar regional uptake in the brain, indicating that these tracers were specific to the CH24H-expressed regions and validated the expression of CH24H in the living brain by different tracers.


Assuntos
Tomografia por Emissão de Pósitrons , Piridinas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Camundongos , Piperidinas/metabolismo , Piperidinas/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Piridinas/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 49(4): 1148-1156, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34651220

RESUMO

PURPOSE: Cholesterol 24-hydroxylase (CH24H) is a brain-specific enzyme that plays a major role in brain cholesterol homeostasis by converting cholesterol into 24S-hydroxycholesterol. The selective CH24H inhibitor soticlestat (TAK-935) is being pursued as a drug for treatment of seizures in developmental and epileptic encephalopathies. Herein, we describe the successful discovery and the preclinical validation of the novel radiolabeled CH24H ligand (3-[18F]fluoroazetidin-1-yl){1-[4-(4-fluorophenyl)pyrimidin-5-yl]piperidin-4-yl}methanone ([18F]T-008) and its tritiated analog, [3H]T-008. METHODS: In vitro autoradiography (ARG) studies in the CH24H wild-type (WT) and knockout (KO) mouse brain sections were conducted using [3H]T-008. PET imaging was conducted in two adult rhesus macaques using [18F]T-008. Each macaque received two test-retest baseline scans and a series of two blocking doses of soticlestat administered prior to [18F]T-008 to determine the CH24H enzyme occupancy. PET data were analyzed with Logan graphical analysis using plasma input. A Lassen plot was applied to estimate CH24H enzyme occupancy by soticlestat. RESULTS: In ARG studies, binding of [3H]T-008 was specific to CH24H in the mouse brain sections, which was not observed in CH24H KO or in wild-type mice after pretreatment with soticlestat. In rhesus PET studies, the rank order of [18F]T-008 uptake was striatum > cortical regions > cerebellum, which was consistent with CH24H distribution in the brain. Pre-blocking with soticlestat reduced the maximum uptake and increased the washout in all brain regions in a dose-dependent manner. Calculated global occupancy values for soticlestat at a dose of 0.89 mg/kg were 97-98%, indicating maximum occupancy. CONCLUSION: The preclinical in vitro and in vivo evaluation of labeled T-008 demonstrates that [18F]T-008 is suitable for imaging CH24H in the brain and warrants further studies in humans.


Assuntos
Piperidinas , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Humanos , Macaca mulatta/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Piridinas
4.
J Med Chem ; 64(7): 3780-3793, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33729758

RESUMO

Dysregulation of histone H3 lysine 4 (H3K4) methylation is implicated in the pathogenesis of neurodevelopmental disorders. Lysine-specific demethylase 1 (LSD1) determines the methylation status of H3K4 through flavin adenine dinucleotide (FAD)-mediated histone demethylation. Therefore, LSD1 inhibition in the brain can be a novel therapeutic option for treating these disorders. Positron emission tomography (PET) imaging of LSD1 allows for investigating LSD1 expression levels under normal and disease conditions and validating target engagement of therapeutic LSD1 inhibitors. This study designed and synthesized (2-aminocyclopropyl)phenyl derivatives with irreversible binding to LSD1 as PET imaging agents for LSD1 in the brain. We optimized lipophilicity of the lead compound to minimize the risk of nonspecific binding and identified 1e with high selectivity over monoamine oxidase A and B, which are a family of FAD-dependent enzymes homologous to LSD1. PET imaging in a monkey showed a high uptake of [18F]1e to regions enriched with LSD1, indicating its specific binding to LSD1.


Assuntos
Encéfalo/metabolismo , Meios de Contraste/metabolismo , Ciclopropanos/metabolismo , Histona Desmetilases/metabolismo , Animais , Linhagem Celular , Meios de Contraste/síntese química , Ciclopropanos/síntese química , Desenho de Fármacos , Humanos , Macaca mulatta , Masculino , Tomografia por Emissão de Pósitrons , Ligação Proteica , Ratos , Suínos
5.
J Nucl Med ; 62(9): 1307-1313, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33579806

RESUMO

Non-catechol-based high-affinity selective dopamine D1 receptor (D1R) agonists were recently described, and candidate PET ligands were selected on the basis of favorable properties. The objective of this study was to characterize in vivo in nonhuman primates 2 novel D1R agonist PET radiotracers, racemic 18F-MNI-800 and its more active atropisomeric (-)-enantiomer, 18F-MNI-968. Methods: Ten brain PET experiments were conducted with 18F-MNI-800 on 2 adult rhesus macaques and 2 adult cynomolgus macaques, and 8 brain PET experiments were conducted with 18F-MNI-968 on 2 adult rhesus macaques and 2 adult cynomolgus macaques. PET data were analyzed with both plasma-input-based methods and reference-region-based methods. Whole-body PET images were acquired with 18F-MNI-800 from 2 adult rhesus macaques for radiation dosimetry estimates. Results:18F-MNI-800 and 18F-MNI-968 exhibited regional uptake consistent with D1R distribution. Specificity and selectivity were demonstrated by dose-dependent blocking with the D1 antagonist SCH-23390. 18F-MNI-968 showed a 30% higher specific signal than 18F-MNI-800, with a nondisplaceable binding potential of approximately 0.3 in the cortex and approximately 1.1 in the striatum. Dosimetry radiation exposure was favorable, with an effective dose of about 0.023 mSv/MBq. Conclusion:18F-MNI-968 has significant potential as a D1R agonist PET radiotracer, and further characterization in human subjects is warranted.


Assuntos
Dopamina , Tomografia por Emissão de Pósitrons , Animais , Macaca mulatta , Imagem Corporal Total
6.
Psychopharmacology (Berl) ; 237(11): 3435-3446, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32813030

RESUMO

RATIONALE: Drugs that rapidly increase dopamine levels have an increased risk of abuse. Dasotraline (DAS) is a dopamine and norepinephrine reuptake inhibitor characterized by slow oral absorption with low potential for abuse. However, it remains unclear whether intravenous (i.v.) administration would facilitate the rapid elevation of dopamine levels associated with stimulant drugs. OBJECTIVE: To assess the kinetics of DAS across the blood-brain barrier and time to onset of dopamine transporters (DAT) inhibition. METHODS: We compared the onset of DAT occupancy and the associated elevation of synaptic dopamine levels in rhesus monkey following i.v. administration of DAS or methylphenidate (MPH) using positron emission tomography (PET). Brain entry times were estimated by reductions in [18F]-FE-PE2I binding to DAT in rhesus monkeys. Elevations of synaptic dopamine were estimated by reductions in [11C]-Raclopride binding to D2 receptors. RESULTS: Intravenous administration of DAS (0.1 and 0.2 mg/kg) resulted in striatal DAT occupancies of 54% and 68%, respectively; i.v. administered MPH (0.1 and 0.5 mg/kg) achieved occupancies of 69% and 88% respectively. Brain entry times of DAS (22 and 15 min, respectively) were longer than for MPH (3 and 2 min). Elevations in synaptic dopamine were similar for both DAS and MPH however the time for half-maximal displacement by MPH (t = 23 min) was 4-fold more rapid than for DAS (t = 88 min). CONCLUSIONS: These results demonstrate that the pharmacodynamics effects of DAS on DAT occupancy and synaptic dopamine levels are more gradual in onset than those of MPH even with i.v. administration that is favored by recreational drug abusers.


Assuntos
1-Naftilamina/análogos & derivados , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dopamina/metabolismo , 1-Naftilamina/administração & dosagem , 1-Naftilamina/metabolismo , Administração Intravenosa , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/metabolismo , Feminino , Macaca mulatta , Masculino , Metilfenidato/administração & dosagem , Metilfenidato/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D2/metabolismo
7.
Eur J Nucl Med Mol Imaging ; 47(13): 3176-3185, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32535652

RESUMO

PURPOSE: The accumulation of misfolded tau is a common feature of several neurodegenerative disorders, with Alzheimer's disease (AD) being the most common. Earlier we identified JNJ-64326067, a novel isoquinoline derivative with high affinity and selectivity for tau aggregates from human AD brain. We report the dosimetry of [18F] JNJ-64326067 and results of a proof-of-concept study comparing subjects with probable Alzheimer's disease to age-matched healthy controls. METHODS: [18F] JNJ-64326067 PET scans were acquired for 90 min and then from 120 to 180 min in 5 participants with [18F]-florbetapir PET amyloid positive probable AD (73 ± 9 years) and 5 [18F]-florbetapir PET amyloid negative healthy controls (71 ± 7 years). Whole-body [18F] JNJ-64326067 PET CT scans were acquired in six healthy subjects for 5.5 h in 3 scanning sessions. Brain PET scans were visually reviewed. Regional quantification included kinetic analysis of distribution volume ration (DVR) estimated by Logan graphical analysis over the entire scan and static analysis of SUVr in late frames. Both methods used ventral cerebellar cortex as a reference region. RESULTS: One of the healthy controls had focal areas of PET signal in occipital and parietal cortex underlying the site of a gunshot injury as an adolescent; the other four healthy subjects had no tau brain signal. Four of the 5 AD participants had visually apparent retention of [18F] JNJ-64326067 in relevant cortical regions. One of the AD subjects was visually negative. Cortical signal in visually positive subjects approached steady state by 120 min. Temporal and frontal cortical SUVr/DVR values in visually positive AD subjects ranged from 1.21 to 3.09/1.2 to 2.18 and from 0.92 to 1.28/0.91 to 1.16 in healthy controls. Whole-body effective dose was estimated to be 0.0257 mSv/MBq for females and 0.0254 mSv/MBq for males. CONCLUSIONS: [18F] JNJ-64326067 could be useful for detection and quantitation of tau aggregates.


Assuntos
Doença de Alzheimer , Adolescente , Doença de Alzheimer/diagnóstico por imagem , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Radioisótopos de Flúor , Humanos , Isoquinolinas , Cinética , Masculino , Tomografia por Emissão de Pósitrons , Piridinas , Compostos Radiofarmacêuticos , Proteínas tau/metabolismo
8.
J Labelled Comp Radiopharm ; 62(1): 34-42, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414212

RESUMO

So far, no suitable 5-HT7 R radioligand exists for clinical positron emission tomography (PET) imaging. [18 F]2FP3 was first tested in vivo in cats, and the results were promising for further evaluations. Here, we evaluate the radioligand in pigs and non-human primates (NHPs). Furthermore, we investigate species differences in 5-HT7 R binding with [3 H]SB-269970 autoradiography in post-mortem pig, NHP, and human brain tissue. Specific binding of [18 F]2FP3 was investigated by intravenous administration of the 5-HT7 R specific antagonist SB-269970. [3 H]SB-269970 autoradiography was performed as previously described. [18 F]2FP3 was synthesized in an overall yield of 35% to 45%. High brain uptake of the tracer was found in both pigs and NHPs; however, pretreatment with SB-269970 only resulted in decreased binding of 20% in the thalamus, a 5-HT7 R-rich region. Autoradiography on post-mortem pig, NHP, and human tissues revealed that specific binding of [3 H]SB-269970 was comparable in the thalamus of pig and NHP. Despite the high uptake of [18 F]2FP3 in both species, the binding could only be blocked to a limited degree with the 5-HT7 R antagonists. We speculate that the affinity of the radioligand is too low for imaging the 5-HT7 Rs in vivo and that part of the PET signal arises from targets other than the 5-HT7 R.


Assuntos
Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor/química , Compostos Radiofarmacêuticos/farmacocinética , Antagonistas da Serotonina/química , Animais , Feminino , Macaca mulatta , Masculino , Fenóis/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Receptores de Serotonina/metabolismo , Sulfonamidas/farmacocinética , Suínos
9.
Mol Imaging Biol ; 21(3): 509-518, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30084043

RESUMO

PURPOSE: Synaptic vesicle protein 2A (SV2A) serves as a biomarker of synaptic density and positron emission tomography (PET) imaging of SV2A could provide a tool to assess progression of neurodegenerative diseases. Two tracers have primarily been reported and characterized in vivo: [11C]UCB-J and [18F]UCB-H. In early human studies, [11C]UCB-J showed promising results, while its F-18-labeled analogue [18F]UCB-H showed suboptimal specific signal in comparison to [11C]UCB-J. Considering the limited use of [11C]UCB-J to facilities with a cyclotron, having a F-18 variant would facilitate large, multicenter imaging trials. We have screened several F-18 derivatives of UCB-J in non-human primates and identified a promising F-18 PET candidate, [18F]MNI-1126, with additional investigations of the racemate [18F]MNI-1038, affording a signal comparable to [11C]UCB-J. PROCEDURES: F-18 derivatives of UCB-J and UCB-H were synthesized and administered to non-human primates for microPET imaging. Following screenings, [18F]MNI-1038 (racemate) and [18F]MNI-1126 (R-enantiomer) were identified with the highest signal and favorable kinetics and were selected for further imaging. Kinetic modeling with one- and two-tissue compartmental models, and linear methods were applied to PET data using metabolite-corrected arterial input function. Pre-block scans with levetiracetam (LEV, 10, 30 mg/kg, iv) were performed to determine the tracers' in vivo specificity for SV2A. Two whole-body PET studies were performed with [18F]MNI-1038 in one male and one female rhesus, and radiation absorbed dose estimates and effective dose (ED, ICRP-103) were estimated with OLINDA/EXM 2.0. RESULTS: All compounds screened displayed very good brain penetration, with a plasma-free fraction of ~ 40 %. [18F]MNI-1126 and [18F]MNI-1038 showed uptake and distribution the most consistent with UCB-J, while the other derivatives showed suboptimal results, with similar or lower uptake than [18F]UCB-H. VT of [18F]MNI-1126 and [18F]MNI-1038 was high in all gray matter regions (within animal averages ~ 30 ml/cm3) and highly correlated with [11C]UCB-J (r > 0.99). Pre-blocking of [18F]MNI-1126 or [18F]MNI-1038 with LEV showed robust occupancy across all gray matter regions, similar to that reported with [11C]UCB-J (~ 85 % at 30 mg/kg, ~ 65 % at 10 mg/kg). Using the centrum semiovale as a reference region, BPND of [18F]MNI-1126 reached values of up to ~ 30 to 40 % higher than those reported for [11C]UCB-J. From whole-body imaging average ED of [18F]MNI-1038 was estimated to be 22.3 µSv/MBq, with tracer being eliminated via both urinary and hepatobiliary pathways. CONCLUSIONS: We have identified a F-18-labeled tracer ([18F]MNI-1126) that exhibits comparable in vivo characteristics and specificity for SV2A to [11C]UCB-J in non-human primates, which makes [18F]MNI-1126 a promising PET radiotracer for imaging SV2A in human trials.


Assuntos
Radioisótopos de Flúor/química , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Vesículas Sinápticas/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Macaca fascicularis , Macaca mulatta , Radiometria , Distribuição Tecidual
10.
Synapse ; 71(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27864853

RESUMO

Imaging the high-affinity, functional state (HA) of dopamine D2 and D3 receptors has been pursued in PET imaging studies of various brain functions. We report further evaluation of 18 F-5-OH-FPPAT, and the newer 18 F-5-OH-FHXPAT and 18 F-7-OH-FHXPAT. Syntheses of 18 F-5-OH-FHXPAT and 18 F-7-OH-FHXPAT were improved by modifications of our previously reported procedures. Brain slices and brain homogenates from male Sprague-Dawley rats were used with the 3 radiotracers (74-111 kBq/cc). Competition with dopamine (1-100 nM) and Gpp(NH)p (10-50 µM) were carried out to demonstrate binding to dopamine D2 and D3 HA-states and binding kinetics of 18 F-5-OH-FPPAT measured. Ex vivo brain slice autoradiography was carried out on rats administered with 18 F-5-OH-FHXPAT to ascertain HA-state binding. PET/CT imaging in rats and wild type (WT) and D2 knock-out mice were carried out using 18 F-7-OH-FHXPAT (2-37 MBq). Striatum was clearly visualized by the three radiotracers in brain slices and dopamine displaced more than 80% of binding, with dissociation rate in homogenates of 2.2 × 10-2 min-1 for 18 F-5-OH-FPPAT. Treatment with Gpp(NH)p significantly reduced 50-80% striatal binding with faster dissociation rates (5.0 × 10-2 min-1 ), suggesting HA-state binding of 18 F-5-OH-FPPAT and 18 F-5-OH-FHXPAT. Striatal binding of 18 F-5-OH-FHXPAT in ex vivo brain slices were sensitive to Gpp(NH)p, suggesting HA-state binding in vivo. PET binding ratios of 18 F-7-OH-FHXPAT in rat brain were ventral striatum/cerebellum = 2.09 and dorsal striatum/cerebellum = 1.65; similar binding ratios were found in the D2 WT mice. These results suggest that in vivo PET measures of agonists in the brain at least in part reflect binding to the membrane-bound HA-state of the dopamine receptor.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Receptores de Dopamina D2/análise , Receptores de Dopamina D3/análise , Animais , Encéfalo/metabolismo , Radioisótopos de Flúor/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Tetra-Hidronaftalenos/farmacologia
11.
Synapse ; 70(4): 163-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26806100

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aß plaques in the brain. The aim of this study was to evaluate the effectiveness of a novel radiotracer, 4-[(11) C]methylamino-4'-N,N-dimethylaminoazobenzene ([(11)C]TAZA), for binding to Aß plaques in postmortem human brain (AD and normal control (NC)). METHODS: Radiosyntheses of [(11)C]TAZA, related [(11)C]Dalene ((11)C-methylamino-4'-dimethylaminostyrylbenzene), and reference [(11)C]PIB were carried out using [(11)C]methyltriflate prepared from [(11) C]CO(2) and purified using HPLC. In vitro binding affinities were carried out in human AD brain homogenate with Aß plaques labeled with [(3) H]PIB. In vitro autoradiography studies with the three radiotracers were performed on hippocampus of AD and NC brains. PET/CT studies were carried out in normal rats to study brain and whole body distribution. RESULTS: The three radiotracers were produced in high radiochemical yields (>40%) and had specific activities >37 GBq/µmol. TAZA had an affinity, K(i) = 0.84 nM and was five times more potent than PIB. [(11)C]TAZA bound specifically to Aß plaques present in AD brains with gray matter to white matter ratios >20. [(11)C]TAZA was displaced by PIB (>90%), suggesting similar binding site for [(11)C]TAZA and [(11)C]PIB. [(11)C]TAZA exhibited slow kinetics of uptake in the rat brain and whole body images showed uptake in interscapular brown adipose tissue (IBAT). Binding in brain and IBAT were affected by preinjection of atomoxetine, a norepinephrine transporter blocker. CONCLUSION: [(11)C]TAZA exhibited high binding to Aß plaques in human AD hippocampus. Rat brain kinetics was slow and peripheral binding to IBAT needs to be further evaluated.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Placa Amiloide/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , p-Dimetilaminoazobenzeno/análogos & derivados , Compostos de Anilina , Animais , Benzotiazóis/farmacocinética , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Imagem Multimodal , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Tiazóis , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Imagem Corporal Total , p-Dimetilaminoazobenzeno/síntese química , p-Dimetilaminoazobenzeno/farmacocinética
12.
Synapse ; 69(12): 577-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26422464

RESUMO

Identification of dopamine D3 receptors (D3R) in vivo is important to understand several brain functions related to addiction. The goal of this work was to identify D3R binding of the dopamine D2 receptor (D2R)/D3R imaging agent, (18)F-fallypride. Brain slices from male Sprague-Dawley rats (n = 6) and New Zealand White rabbits (n = 6) were incubated with (18)F-fallypride and D3R selective agonist (R)-7-OH-DPAT (98-fold D3R selective). Rat slices were also treated with BP 897 (68-fold D3R selective partial agonist) and NGB 2904 (56-fold D3R selective antagonist). In vivo rat studies (n = 6) were done on Inveon PET using 18-37 MBq (18)F-fallypride and drug-induced displacement by (R)-7-OH-DPAT, BP 897 and NGB 2904. PET/CT imaging of wild type (WT, n = 2) and D2R knock-out (KO, n = 2) mice were carried out with (18)F-fallypride. (R)-7-OH-DPAT displaced binding of (18)F-fallypride, both in vitro and in vivo. In vitro, at 10 nM (R)-7-OH-DPAT, (18)F-fallypride binding in the rat ventral striatum (VST) and dorsal striatum (DST) and rabbit nucleus accumbens were reduced by ∼10-15%. At 10 µM (R)-7-OH-DPAT all regions in rat and rabbit were reduced by ≥85%. In vivo reductions for DST and VST before and after (R)-7-OH-DPAT were: low-dose (0.015 mg kg(-1)) DST -22%, VST -29%; high-dose (1.88 mg kg(-1)) DST -58%, VST -77%, suggesting D3R/D2R displacement. BP 897 and NGB 2904 competed with (18)F-fallypride in vitro, but unlike BP 897, NGB 2904 did not displace (18)F-fallypride in vivo. The D2R KO mice lacked (18)F-fallypride binding in the DST. In summary, our findings suggest that up to 20% of (18)F-fallypride may be bound to D3R sites in vivo.


Assuntos
Benzamidas/farmacocinética , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Pirrolidinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Dopamina D3/metabolismo , Animais , Encéfalo/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Fluorenos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , Ligação Proteica , Coelhos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/antagonistas & inibidores , Especificidade da Espécie , Tetra-Hidronaftalenos/farmacologia , Distribuição Tecidual
13.
Synapse ; 69(2): 96-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25347981

RESUMO

We report the use of ß3 adrenergic receptor mediated activation of rat brain frontal cortex using mirabegron (a selective ß3 adrenoceptor agonist), measured by (18)F-FDG PET/CT. Another ß3 agonist, CL 316,243, did not have this effect due to impermeability through the blood brain barrier (BBB), while atomoxetine, a norepinephrine transporter blocker, did increase (18)F-FDG uptake in the frontal cortex. Mirabegron exhibited a dose-dependent increase in frontal cortex (18)F-FDG uptake. These findings suggest a possible use of selective ß3 adrenoceptor agonists in reversing regional glucose hypometabolism in the brain.


Assuntos
Acetanilidas/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Dioxóis/farmacologia , Fluordesoxiglucose F18/farmacocinética , Lobo Frontal/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Tiazóis/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Lobo Frontal/efeitos dos fármacos , Masculino , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Ratos , Tomografia Computadorizada por Raios X
14.
Nucl Med Biol ; 41(10): 841-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25199843

RESUMO

OBJECTIVES: The spinal cord is known to be innervated with dopaminergic cells with catecholaminergic projections arising from the medulla and pons and dopaminergic transmission in the spinal cord is vital for sensory and motor function. Our goal was to evaluate and compare the imaging capability of dopamine D2/D3 receptors in the rat spinal cord using PET ligands (18)F-fallypride and (11)C-fallypride. METHODS: Male Sprague-Dawley rats were used in all in vitro and in vivo studies. Spinal cord and brain sections were used for in vitro autoradiography and ex vivo autoradiography. For in vivo studies animals received a (18)F-fallypride scan or a (11)C-fallypride PET scan. The spinal cord and the brain were then harvested, flash-frozen and imaged ex vivo. For in vivo analysis Logan plots with cerebellum as a reference was used to evaluate binding potentials (BP). Tissue ratios were used for ex vivo analysis. Drug effects were evaluated using clozapine, haloperidol and dopamine were evaluated on spinal cord sections in vitro. RESULTS: In vitro studies showed (18)F-fallypride binding to superficial dorsal horn (SDH), dorsal horn (DH), ventral horn (VH) and the pars centralis (PC). In the cervical section, the greatest amount of binding appeared to be in the SDH. Ex vivo studies showed approximately 6% of (18)F-fallypride in SDH compared to that observed in the striatum. In vivo analysis of both (18)F-fallypride and (11)C-fallypride in the spinal cord were comparable to that in the extrastriatal regions. Haloperidol and clozapine displaced more than 75% of the (18)F-fallypride in spinal cord sections. CONCLUSIONS: Our studies showed (18)F-fallypride and (11)C-fallypride binding in the spinal cord in vitro and in vivo. The binding pattern correlates well with the known distribution of dopamine D2/D3 receptors in the spinal cord.


Assuntos
Benzamidas/farmacocinética , Radioisótopos de Flúor/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Medula Espinal/diagnóstico por imagem , Animais , Benzamidas/química , Técnicas In Vitro , Masculino , Tomografia por Emissão de Pósitrons/métodos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/química , Receptores de Dopamina D3/antagonistas & inibidores , Medula Espinal/metabolismo
15.
Nat Med ; 20(2): 215-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24412923

RESUMO

Progressive inflammation in atherosclerotic plaques is associated with increasing risk of plaque rupture. Molecular imaging of activated macrophages with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) has been proposed for identification of patients at higher risk for acute vascular events. Because mannose is an isomer of glucose that is taken up by macrophages through glucose transporters and because mannose receptors are expressed on a subset of the macrophage population in high-risk plaques, we applied (18)F-labeled mannose (2-deoxy-2-[(18)F]fluoro-D-mannose, [(18)F]FDM) for targeting of plaque inflammation. Here, we describe comparable uptake of [(18)F]FDM and [(18)F]FDG in atherosclerotic lesions in a rabbit model; [(18)F]FDM uptake was proportional to the plaque macrophage population. Our FDM competition studies in cultured cells with 2-deoxy-2-[(14)C]carbon-D-glucose ([(14)C]2DG) support at least 35% higher [(18)F]FDM uptake by macrophages in cell experiments. We also demonstrate that FDM restricts binding of anti-mannose receptor antibody to macrophages by approximately 35% and that mannose receptor targeting may provide an additional avenue for imaging of plaque inflammation.


Assuntos
Aterosclerose/diagnóstico , Macrófagos/metabolismo , Placa Aterosclerótica/ultraestrutura , Tomografia por Emissão de Pósitrons/métodos , Ramnose/análogos & derivados , Análise de Variância , Animais , Aterosclerose/patologia , Autorradiografia , Humanos , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/metabolismo , Coelhos , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Ramnose/farmacocinética , Tomografia Computadorizada por Raios X
16.
Nucl Med Biol ; 41(1): 10-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24090673

RESUMO

OBJECTIVE: Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [(18)F]fluoro-2-deoxyglucose ([(18)F]FDG) positron emission tomography (PET)/computed tomography (CT) in mice. METHODS: A ß3-adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine), were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [(18)F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. RESULTS: Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [(18)F]FDG PET images. CL 316243 increased the total [(18)F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [(18)F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [(18)F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [(18)F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [(18)F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT Hounsfield unit (HU) (R(2)=0.55, p<0.001) and between CT HU levels of IBAT and liver (R(2)=0.69, p<0.006) was observed. CONCLUSIONS: The three pharmacologic approaches reported here enhanced BAT metabolism by targeting different sites in adrenergic system as measured by [(18)F]FDG PET/CT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fluordesoxiglucose F18 , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Receptores Adrenérgicos/metabolismo , Tomografia Computadorizada por Raios X , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/efeitos dos fármacos , Agonistas Adrenérgicos/farmacologia , Animais , Fluordesoxiglucose F18/metabolismo , Masculino , Camundongos
17.
J Vis Exp ; (78)2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23963311

RESUMO

We describe experimental and statistical steps for creating dopamine movies of the brain from dynamic PET data. The movies represent minute-to-minute fluctuations of dopamine induced by smoking a cigarette. The smoker is imaged during a natural smoking experience while other possible confounding effects (such as head motion, expectation, novelty, or aversion to smoking repeatedly) are minimized. We present the details of our unique analysis. Conventional methods for PET analysis estimate time-invariant kinetic model parameters which cannot capture short-term fluctuations in neurotransmitter release. Our analysis--yielding a dopamine movie--is based on our work with kinetic models and other decomposition techniques that allow for time-varying parameters. This aspect of the analysis--temporal-variation--is key to our work. Because our model is also linear in parameters, it is practical, computationally, to apply at the voxel level. The analysis technique is comprised of five main steps: pre-processing, modeling, statistical comparison, masking and visualization. Preprocessing is applied to the PET data with a unique 'HYPR' spatial filter that reduces spatial noise but preserves critical temporal information. Modeling identifies the time-varying function that best describes the dopamine effect on 11C-raclopride uptake. The statistical step compares the fit of our (lp-ntPET) model to a conventional model. Masking restricts treatment to those voxels best described by the new model. Visualization maps the dopamine function at each voxel to a color scale and produces a dopamine movie. Interim results and sample dopamine movies of cigarette smoking are presented.


Assuntos
Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Fumar/metabolismo , Radioisótopos de Carbono , Corpo Estriado/química , Dopamina/análise , Antagonistas de Dopamina/farmacocinética , Humanos , Tomografia por Emissão de Pósitrons/instrumentação , Racloprida/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Estatísticas não Paramétricas
18.
Synapse ; 67(9): 596-608, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23504990

RESUMO

INTRODUCTION: Serotonin 5-HT(1A) receptors have been investigated in various CNS disorders, including epilepsy, mood disorders, and neurodegeneration. [¹8F]Mefway (N-{2-[4-(2'-methoxyphenyl)piperazinyl]ethyl}-N-(2-pyridyl)-N-(cis/trans-4'-[¹8F]fluoromethylcyclohexane)-carboxamide) has been developed as a suitable positron emission tomography (PET) imaging agent for these receptors. We have now evaluated the suitability of [¹8F]trans-mefway in rat and mouse models using PET and computerized tomography (CT) imaging and corroborated with ex vivo and in vitro autoradiographic studies. METHODS: Normal Sprague-Dawley rats and Balb/C mice were used for PET/CT imaging using intravenously injected [¹8F]trans-mefway. Brain PET data were coregistered with rat and mouse magnetic resonance imaging template and regional distribution of radioactivity was quantitated. Selected animals were used for ex vivo autoradiographic studies to confirm regional brain distribution and quantitative measures of binding, using brain region to cerebellum ratios. Binding affinity of trans-mefway and WAY-100635 was measured in rat brain homogenates. Distribution of [¹8F]trans-4-fluoromethylcyclohexane carboxylate ([¹8F]FMCHA), a major metabolite of [¹8F] trans-mefway, was assessed in the rat by PET/CT. RESULTS: The inhibition constant, K(i) for trans-mefway was 0.84 nM and that for WAY-100635 was 1.07 nM. Rapid brain uptake of [¹8F]trans-mefway was observed in all rat brain regions and clearance from cerebellum was fast and was used as a reference region in all studies. Distribution of [¹8F]trans-mefway in various brain regions was consistent in PET and in vitro studies. The dorsal raphe was visualized and quantified in the rat PET but identification in the mouse was difficult. The rank order of binding to the various brain regions was hippocampus > frontal cortex > anterior cingulate cortex > lateral septal nuclei > dorsal raphe nuclei. CONCLUSION: [¹8F]trans-Mefway appears to be an effective 5-HT(1A) receptor imaging agent in rodents for studies of various disease models.


Assuntos
Encéfalo/diagnóstico por imagem , Piperazinas/farmacologia , Tomografia por Emissão de Pósitrons , Piridinas/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Animais , Radioisótopos de Flúor/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
19.
Mol Imaging Biol ; 15(2): 222-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22833323

RESUMO

PURPOSE: [(18)F]Mefway is a novel radiotracer specific to the serotonin 5-HT1A receptor class. In preparation for using this tracer in humans, we have performed whole-body PET studies in mice to evaluate the biodistribution and dosimetry of [(18)F]Mefway. METHODS: Six mice (three females and three males) received IV injections of [(18)F]Mefway and were scanned for 2 h in an Inveon-dedicated PET scanner. Each animal also received a high-resolution CT scan using an Inveon CT. The CT images were used to draw volume of interest on the following organs: the brain, large intestine, stomach, heart, kidneys, liver, lungs, pancreas, bone, spleen, testes, thymus, gallbladder, uterus, and urinary bladder. All organ time-activity curves without decay correction were normalized to the injected activity. The area under the normalized curves was then used to compute the residence times in each organ. Data were analyzed using PMOD and Matlab software. The absorbed doses in mouse organs were computed using the RAdiation Dose Assessment Resource animal models for dose assessment. The residence times in mouse organs were converted to human values using scale factors based on differences between organ and body weights. OLINDA/EXM 1.1 software was used to compute the absorbed human doses in multiple organs for both female and male phantoms. RESULTS: The highest mouse residence times were found in the liver, urinary bladder, and kidneys. The largest doses in mice were found in the urinary bladder (critical organ), kidney, and liver for both females and males, indicating primary elimination via urinary system. The projected human effective doses were 1.21E - 02 mSv/MBq for the adult female model and 1.13E - 02 mSv/MBq for the adult male model. The estimated human biodistribution of [(18)F]Mefway was similar to that of [(11)C]WAY 100,635, a 5-HT1A tracer for which dosimetry has been evaluated in humans. CONCLUSIONS: The elimination of radiotracer was primarily via the kidney and urinary bladder with the urinary bladder being the critical organ. Whole-body mouse imaging can be used as a preclinical tool to provide initial estimates of the absorbed doses of [(18)F]Mefway in humans.


Assuntos
Radioisótopos de Flúor/farmacocinética , Piperazinas/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Piridinas/farmacocinética , Imagem Corporal Total/métodos , Animais , Simulação por Computador , Feminino , Humanos , Masculino , Camundongos , Imagem Multimodal/métodos , Doses de Radiação , Distribuição Tecidual , Tomografia Computadorizada por Raios X
20.
Synapse ; 67(2): 79-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23080264

RESUMO

Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the ß-adrenergic effects, propranolol (ß-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of ß(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates ß(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/efeitos dos fármacos , Inibidores da Captação Adrenérgica/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Cloridrato de Atomoxetina , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fluordesoxiglucose F18/farmacologia , Masculino , Obesidade/metabolismo , Propranolol/farmacologia , Propilaminas/farmacologia , Cintilografia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA