Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 415(1): 98-110, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27155222

RESUMO

The protein inhibitor of activated STAT-1 (PIAS1) is one of the few known SUMO E3 ligases. PIAS1 has been implicated in several biological processes including repression of innate immunity and DNA repair. However, PIAS1 function during development and tissue differentiation has not been studied. Here, we report that Pias1 is required for proper embryonic development. Approximately 90% of Pias1 null embryos die in utero between E10.5 and E12.5. We found significant apoptosis within the yolk sac (YS) blood vessels and concomitant loss of red blood cells (RBCs) resulting in profound anemia. In addition, Pias1 loss impairs YS angiogenesis and results in defective capillary plexus formation and blood vessel occlusions. Moreover, heart development is impaired as a result of loss of myocardium muscle mass. Accordingly, we found that Pias1 expression in primary myoblasts enhances the induction of cardiac muscle genes MyoD, Myogenin and Myomaker. PIAS1 protein regulation of cardiac gene transcription is dependent on transcription factors Myocardin and Gata-4. Finally, endothelial cell specific inactivation of Pias1 in vivo impairs YS erythrogenesis, angiogenesis and recapitulates loss of myocardium muscle mass. However, these defects are not sufficient to recapitulate the lethal phenotype of Pias1 null embryos. These findings highlight Pias1 as an essential gene for YS erythropoiesis and vasculogenesis in vivo.


Assuntos
Desenvolvimento Embrionário/fisiologia , Eritropoese/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas Inibidoras de STAT Ativados/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Desenvolvimento Embrionário/genética , Células Endoteliais/citologia , Eritropoese/genética , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Camadas Germinativas/citologia , Coração/embriologia , Macrófagos/citologia , Camundongos , Mielopoese/genética , Mielopoese/fisiologia , Neovascularização Fisiológica/genética , Penetrância , Proteínas Inibidoras de STAT Ativados/deficiência , Proteínas Inibidoras de STAT Ativados/genética , Sumoilação , Fatores de Transcrição/fisiologia , Saco Vitelino/irrigação sanguínea , Saco Vitelino/crescimento & desenvolvimento
2.
Clin Cancer Res ; 22(23): 5851-5863, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27220963

RESUMO

PURPOSE: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide due to the limited availability of effective therapeutic options. For instance, there are no effective strategies for NSCLCs that harbor mutant KRAS, the most commonly mutated oncogene in NSCLC. Thus, our purpose was to make progress toward the generation of a novel therapeutic strategy for NSCLC. EXPERIMENTAL DESIGN: We characterized the effects of suppressing focal adhesion kinase (FAK) by RNA interference (RNAi), CRISPR/CAS9 gene editing or pharmacologic approaches in NSCLC cells and in tumor xenografts. In addition, we tested the effects of suppressing FAK in association with ionizing radiation (IR), a standard-of-care treatment modality. RESULTS: FAK is a critical requirement of mutant KRAS NSCLC cells. With functional experiments, we also found that, in mutant KRAS NSCLC cells, FAK inhibition resulted in persistent DNA damage and susceptibility to exposure to IR. Accordingly, administration of IR to FAK-null tumor xenografts causes a profound antitumor effect in vivo CONCLUSIONS: FAK is a novel regulator of DNA damage repair in mutant KRAS NSCLC and its pharmacologic inhibition leads to radiosensitizing effects that could be beneficial in cancer therapy. Our results provide a framework for the rationale clinical testing of FAK inhibitors in NSCLC patients. Clin Cancer Res; 22(23); 5851-63. ©2016 AACR.


Assuntos
Dano ao DNA/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Radiossensibilizantes/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Neoplasia ; 18(5): 282-293, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27237320

RESUMO

The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC) cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA