Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38921569

RESUMO

Microalgae are currently considered an attractive source of highly valuable metabolites potentially exploitable as anticancer agents, nutraceuticals and cosmeceuticals and for bioenergy purposes. Their ease of culturing and their high growth rates further promote their use as raw material for the production of specialty products. In the present paper, we focused our attention on specific glycerol-based lipid compounds, monoacylglycerols (MAGs), which displayed in our previous studies a selective cytotoxic activity against the haematological U-937 and the colon HCT-116 cancer cell lines. Here, we performed a quali/quantitative analysis of MAGs and total fatty acids (FAs) along with a profiling of the main lipid classes in a panel of 12 microalgal species, including diatoms and dinoflagellates. Our results highlight an inter- and intraspecific variability of MAG profile in the selected strains. Among them, Skeletonema marinoi (strain FE7) has emerged as the most promising source for possible biotechnological production of MAGs.


Assuntos
Ácidos Graxos , Microalgas , Monoglicerídeos , Microalgas/metabolismo , Humanos , Monoglicerídeos/farmacologia , Ácidos Graxos/metabolismo , Diatomáceas/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Organismos Aquáticos , Dinoflagellida/metabolismo , Dinoflagellida/química , Células HCT116
2.
J Transl Med ; 21(1): 627, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715252

RESUMO

BACKGROUND: Cancer cells are characterized by uncontrolled cell proliferation and impaired bioenergetics. Sirtuins are a family of highly conserved enzymes that play a fundamental role in energy metabolism regulation. SIRT1, in particular, drives many physiological stress responses and metabolic pathways following nutrient deprivation. We previously showed that SIRT1 activation using SCIC2.1 was able to attenuate genotoxic response and senescence. Here, we report that in hepatocellular carcinoma (HCC) cells under glucose-deprived conditions, SCIC2.1 treatment induced overexpression of SIRT1, SIRT3, and SIRT6, modulating metabolic response. METHODS: Flow cytometry was used to analyze the cell cycle. The MTT assay and xCELLigence system were used to measure cell viability and proliferation. In vitro enzymatic assays were carried out as directed by the manufacturer, and the absorbance was measured with an automated Infinite M1000 reader. Western blotting and immunoprecipitation were used to evaluate the expression of various proteins described in this study. The relative expression of genes was studied using real-time PCR. We employed a Seahorse XF24 Analyzer to determine the metabolic state of the cells. Oil Red O staining was used to measure lipid accumulation. RESULTS: SCIC2.1 significantly promoted mitochondrial biogenesis via the AMPK-p53-PGC1α pathway and enhanced mitochondrial ATP production under glucose deprivation. SIRT1 inhibition by Ex-527 further supported our hypothesis that metabolic effects are dependent on SIRT1 activation. Interestingly, SCIC2.1 reprogrammed glucose metabolism and fatty acid oxidation for bioenergetic circuits by repressing de novo lipogenesis. In addition, SCIC2.1-mediated SIRT1 activation strongly modulated antioxidant response through SIRT3 activation, and p53-dependent stress response via indirect recruitment of SIRT6. CONCLUSION: Our results show that SCIC2.1 is able to promote energy homeostasis, attenuating metabolic stress under glucose deprivation via activation of SIRT1. These findings shed light on the metabolic action of SIRT1 in the pathogenesis of HCC and may help determine future therapies for this and, possibly, other metabolic diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuína 3 , Sirtuínas , Humanos , Neoplasias Hepáticas/genética , Sirtuína 1 , Carcinoma Hepatocelular/genética , Proteína Supressora de Tumor p53 , Homeostase , Sirtuínas/genética
3.
Cancers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37046620

RESUMO

A large body of clinical and experimental evidence indicates that colorectal cancer is one of the most common multifactorial diseases. Although some useful prognostic biomarkers for clinical therapy have already been identified, it is still difficult to characterize a therapeutic signature that is able to define the most appropriate treatment. Gene expression levels of the epigenetic regulator histone deacetylase 2 (HDAC2) are deregulated in colorectal cancer, and this deregulation is tightly associated with immune dysfunction. By interrogating bioinformatic databases, we identified patients who presented simultaneous alterations in HDAC2, class II major histocompatibility complex transactivator (CIITA), and beta-2 microglobulin (B2M) genes based on mutation levels, structural variants, and RNA expression levels. We found that B2M plays an important role in these alterations and that mutations in this gene are potentially oncogenic. The dysregulated mRNA expression levels of HDAC2 were reported in about 5% of the profiled patients, while other specific alterations were described for CIITA. By analyzing immune infiltrates, we then identified correlations among these three genes in colorectal cancer patients and differential infiltration levels of genetic variants, suggesting that HDAC2 may have an indirect immune-related role in specific subgroups of immune infiltrates. Using this approach to carry out extensive immunological signature studies could provide further clinical information that is relevant to more resistant forms of colorectal cancer.

4.
Mar Drugs ; 20(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36286419

RESUMO

Marine microalgae are receiving great interest as sustainable sources of bioactive metabolites for health, nutrition and personal care. In the present study, a bioassay-guided screening allowed identifying an enriched fraction from SPE separation of the methanolic extract of the marine diatom Thalassiosira rotula with a chemically heterogeneous composition of cytotoxic molecules, including PUFAs, the terpene phytol, the carotenoid fucoxanthin and the phytosterol 24-methylene cholesterol (24-MChol). In particular, this latter was the object of deep investigation aimed to gain insight into the mechanisms of action activated in two tumour cell models recognised as resistant to chemical treatments, the breast MCF7 and the lung A549 cell lines. The results of our studies revealed that 24-MChol, in line with the most studied ß-sitosterol (ß-SIT), showed cytotoxic activity in a 3-30 µM range of concentration involving the induction of apoptosis and cell cycle arrest, although differences emerged between the two sterols and the two cancer systems when specific targets were investigated (caspase-3, caspase-9, FAS and TRAIL).


Assuntos
Diatomáceas , Fitosteróis , Diatomáceas/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Esteróis/farmacologia , Esteróis/metabolismo , Colesterol/metabolismo , Fitol
5.
Cancers (Basel) ; 14(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884474

RESUMO

The major histocompatibility complex (MHC) class I expression in cancer cells has a crucial impact on the outcome of T cell-mediated cancer immunotherapy. We now determined the HLA class I allelic variants and their expression in PD-L1-deficient and positive rare sarcoma tissues. Tumor tissues were HLA-I classified based on HLA-A and -B alleles, and for class II, the HLA-DR-B by Taqman genomic PCRs. The HLA-A24*:10-B73*:01 haplotype was the most common. A general down-regulation or deletion of HLA-B mRNA and HLA-A was observed, compared to HLA-DR-B. HLA-I was almost too low to be detectable by immunohistochemistry and 32% of grade III cases were positive to PD-L1. Functional cytotoxic assays co-culturing patient biopsies with autologous T cells were used to assess their ability to kill matched tumor cells. These results establish that deletion of HLA-I loci together with their down-regulation in individual patient restrict the autologous lymphocyte cytotoxic activity, even in the presence of the immune checkpoint blocking antibody, Nivolumab. Additionally, the proposed cytotoxic test suggests a strategy to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.

6.
Mol Cancer ; 21(1): 125, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681235

RESUMO

BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear. METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype. RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression. CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.


Assuntos
Cromatina , Leucemia Mieloide Aguda , Complexo Repressor Polycomb 1 , Cromatina/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Exp Clin Cancer Res ; 41(1): 83, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241126

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) represents an unmet clinical need due to the very poor prognosis and the lack of effective therapy. Here we investigated the potential of domatinostat (4SC-202), a new class I histone deacetylase (HDAC) inhibitor, currently in clinical development, to sensitize PDAC to first line standard gemcitabine (G)/taxol (T) doublet chemotherapy treatment. METHODS: Synergistic anti-tumor effect of the combined treatment was assessed in PANC1, ASPC1 and PANC28 PDAC cell lines in vitro as well as on tumor spheroids and microtissues, by evaluating combination index (CI), apoptosis, clonogenic capability. The data were confirmed in vivo xenograft models of PANC28 and PANC1 cells in athymic mice. Cancer stem cells (CSC) targeting was studied by mRNA and protein expression of CSC markers, by limiting dilution assay, and by flow cytometric and immunofluorescent evaluation of CSC mitochondrial and cellular oxidative stress. Mechanistic role of forkhead box M1 (FOXM1) and downstream targets was evaluated in FOXM1-overexpressing PDAC cells. RESULTS: We showed that domatinostat sensitized in vitro and in vivo models of PDAC to chemotherapeutics commonly used in PDAC patients management and particularly to GT doublet, by targeting CSC compartment through the induction of mitochondrial and cellular oxidative stress. Mechanistically, we showed that domatinostat hampers the expression and function of FOXM1, a transcription factor playing a crucial role in stemness, oxidative stress modulation and DNA repair. Domatinostat reduced FOXM1 protein levels by downregulating mRNA expression and inducing proteasome-mediated protein degradation thus preventing nuclear translocation correlated with a reduction of FOXM1 target genes. Furthermore, by overexpressing FOXM1 in PDAC cells we significantly reduced domatinostat-inducing oxidative mitochondrial and cellular stress and abolished GT sensitization, both in adherent and spheroid cells, confirming FOXM1 crucial role in the mechanisms described. Finally, we found a correlation of FOXM1 expression with poor progression free survival in PDAC chemotherapy-treated patients. CONCLUSIONS: Overall, we suggest a novel therapeutic strategy based on domatinostat to improve efficacy and to overcome resistance of commonly used chemotherapeutics in PDAC that warrant further clinical evaluation.


Assuntos
Benzamidas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Benzamidas/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
9.
Mar Drugs ; 21(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36662197

RESUMO

In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of cancer. However, the administration of drugs in cancer patients requires careful evaluation since their interaction with individual biological macromolecules, such as proteins or nucleic acids, determines variable downstream effects. This is reflected in a constant search for personalized therapies that lay the foundations of modern medicine. The new knowledge acquired on cancer mechanisms has certainly allowed advancements in tumor prevention, but unfortunately, due to the huge complexity and heterogeneity of cancer, we are still looking for a definitive therapy and clinical approaches. In this review, we discuss the significance of recently approved molecules originating from the marine environment, starting from their organism of origin to their structure and mechanism of action. Subsequently, these bio-compounds are used as models to illustrate possible bioinformatics approaches for the search of new targets that are useful for improving the knowledge on anticancer therapies.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Humanos , Organismos Aquáticos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química , Neoplasias/tratamento farmacológico , Biologia Computacional
10.
Cardiovasc Diabetol ; 20(1): 150, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301253

RESUMO

BACKGROUND: Empagliflozin (EMPA), a selective inhibitor of the sodium glucose co-transporter 2, reduced the risk of hospitalization for heart failure and cardiovascular death in type 2 diabetic patients in the EMPA-REG OUTCOME trial. Recent trials evidenced several cardio-renal benefits of EMPA in non-diabetic patients through the involvement of biochemical pathways that are still to be deeply analysed. We aimed to evaluate the effects of EMPA on myocardial strain of non-diabetic mice treated with doxorubicin (DOXO) through the analysis of NLRP3 inflammasome and MyD88-related pathways resulting in anti-apoptotic and anti-fibrotic effects. METHODS: Preliminary cellular studies were performed on mouse cardiomyocytes (HL-1 cell line) exposed to doxorubicin alone or combined to EMPA. The following analysis were performed: determination of cell viability (through a modified MTT assay), study of intracellular ROS production, lipid peroxidation (quantifying intracellular malondialdehyde and 4-hydroxynonenal), intracellular Ca2+ homeostasis. Moreover, pro-inflammatory studies were also performed: expression of NLRP3 inflammasome, MyD88 myddosome and p65/NF-κB associated to secretion of cytokines involved in cardiotoxicity (Interleukins 1ß, 8, 6). C57Bl/6 mice were untreated (Sham, n = 6) or treated for 10 days with doxorubicin (DOXO, n = 6), EMPA (EMPA, n = 6) or doxorubicin combined to EMPA (DOXO-EMPA, n = 6). DOXO was injected intraperitoneally. Ferroptosis and xanthine oxidase were studied before and after treatments. Cardiac function studies, including EF, FS and radial/longitudinal strain were analysed through transthoracic echocardiography (Vevo 2100). Cardiac fibrosis and apoptosis were histologically studied through Picrosirius red and TUNEL assay, respectively and quantified through pro-collagen-1α1, MMP-9 and Caspase-3 expression. Tissue NLRP3, MyD88 and cytokines were also quantified before and after treatments through ELISA methods. RESULTS: Cardiomyocytes exposed to doxorubicin increased the intracellular Ca2+ content and expression of several pro-inflammatory markers associated to cell death; co-incubation with EMPA reduced significantly the magnitude of the effects. In preclinical study, EMPA increased EF and FS compared to DOXO groups (p < 0.05), prevented the reduction of radial and longitudinal strain after 10 days of treatment with doxorubicin (RS) 30.3% in EMPA-DOXO vs 15.7% in DOXO mice; LS - 17% in EMPA-DOXO vs - 11.7% in DOXO mice (p < 0.001 for both). Significant reductions in ferroptosis, xanthine oxidase expression, cardiac fibrosis and apoptosis in EMPA associated to DOXO were also seen. A reduced expression of pro-inflammatory cytokines, NLRP3, MyD88 and NF-kB in heart, liver and kidneys was also seen in DOXO-EMPA group compared to DOXO (p < 0.001). CONCLUSION: EMPA reduced ferroptosis, fibrosis, apoptosis and inflammation in doxorubicin-treated mice through the involvement of NLRP3 and MyD88-related pathways, resulting in significant improvements in cardiac functions. These findings provides the proof of concept for translational studies designed to reduce adverse cardiovascular outcomes in non-diabetic cancer patients treated with doxorubicin.


Assuntos
Compostos Benzidrílicos/farmacologia , Citocinas/metabolismo , Glucosídeos/farmacologia , Cardiopatias/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antifibróticos/farmacologia , Apoptose/efeitos dos fármacos , Cardiotoxicidade , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Feminino , Ferroptose/efeitos dos fármacos , Fibrose , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
11.
ChemMedChem ; 16(6): 989-999, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33220015

RESUMO

Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide (5 b) previously described by us as a HDAC inhibitor, we prepared four aza-analogues, 6-8, 9 b, as regioisomers containing the pyridine nucleus. Preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide (9 b) as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates (9 a, 9 c-f, and 11 a-f) and 2'-aminoanilides (10 a-f and 12 a-f), related to 9 b, to be tested against HDACs. Among them, the nicotinic hydroxamate 11 d displayed sub-nanomolar potency (IC50 : 0.5 nM) and selectivity up to 34 000 times that of HDAC4 and from 100 to 1300 times that of all the other tested HDAC isoforms. The 2'-aminoanilides were class I-selective HDAC inhibitors, generally more potent against HDAC3, with the nicotinic anilide 12 d being the most effective (IC50HDAC3 =0.113 µM). When tested in U937 leukemia cells, the hydroxamates 9 e, 11 c, and 11 d blocked over 80 % of cells in G2/M phase, whereas the anilides did not alter cell-cycle progress. In the same cell line, the hydroxamate 11 c and the anilide 10 b induced about 30 % apoptosis, and the anilide 12 c displayed about 40 % cytodifferentiation. Finally, the most potent compounds in leukemia cells 9 b, 11 c, 10 b, 10 e, and 12 c were also tested in K562, HCT116, and A549 cancer cells, displaying antiproliferative IC50 values at single-digit to sub-micromolar level.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Piridinas/farmacologia , Anilidas/síntese química , Anilidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estrutura Molecular , Piridinas/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008690

RESUMO

The AIF/CypA complex exerts a lethal activity in several rodent models of acute brain injury. Upon formation, it translocates into the nucleus of cells receiving apoptotic stimuli, inducing chromatin condensation, DNA fragmentation, and cell death by a caspase-independent mechanism. Inhibition of this complex in a model of glutamate-induced cell death in HT-22 neuronal cells by an AIF peptide (AIF(370-394)) mimicking the binding site on CypA, restores cell survival and prevents brain injury in neonatal mice undergoing hypoxia-ischemia without apparent toxicity. Here, we explore the effects of the peptide on SH-SY5Y neuroblastoma cells stimulated with staurosporine (STS), a cellular model widely used to study Parkinson's disease (PD). This will pave the way to understanding the role of the complex and the potential therapeutic efficacy of inhibitors in PD. We find that AIF(370-394) confers resistance to STS-induced apoptosis in SH-SY5Y cells similar to that observed with CypA silencing and that the peptide works on the AIF/CypA translocation pathway and not on caspases activation. These findings suggest that the AIF/CypA complex is a promising target for developing novel therapeutic strategies against PD.


Assuntos
Fator de Indução de Apoptose/metabolismo , Ciclofilina A/metabolismo , Estaurosporina/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Peptídeos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transporte Proteico/efeitos dos fármacos
14.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650558

RESUMO

Bis-(3-bromo-4-hydroxy)benzylidene cyclic compounds have been reported by us as epigenetic multiple ligands, but different substitutions at the two wings provided analogues with selective inhibition. Since the 1-benzyl-3,5-bis((E)-3-bromobenzylidene)piperidin-4-one 3 displayed dual p300/EZH2 inhibition joined to cancer-selective cell death in a panel of tumor cells and in in vivo xenograft models, we prepared a series of bis((E)-2-bromobenzylidene) cyclic compounds 4a-n to test in biochemical (p300, PCAF, SIRT1/2, EZH2, and CARM1) and cellular (NB4, U937, MCF-7, SH-SY5Y) assays. The majority of 4a-n exhibited potent dual p300 and CARM1 inhibition, sometimes reaching the submicromolar level, and induction of apoptosis mainly in the tested leukemia cell lines. The most effective compounds in both enzyme and cellular assays carried a 4-piperidone moiety and a methyl (4d), benzyl (4e), or acyl (4k-m) substituent at N1 position. Elongation of the benzyl portion to 2-phenylethyl (4f) and 3-phenylpropyl (4g) decreased the potency of compounds at both the enzymatic and cellular levels, but the activity was promptly restored by introduction of a ketone group into the phenylalkyl substituent (4h-j). Western blot analyses performed in NB4 and MCF-7 cells on selected compounds confirmed their inhibition of p300 and CARM1 through decrease of the levels of acetyl-H3 and acetyl-H4, marks for p300 inhibition, and of H3R17me2, mark for CARM1 inhibition.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Derivados de Benzeno , Proteína p300 Associada a E1A/antagonistas & inibidores , Inibidores Enzimáticos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Proteína p300 Associada a E1A/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Células U937
15.
Front Oncol ; 10: 799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582541

RESUMO

Acute myeloid leukemia (AML) is a progressive hematopoietic-derived cancer arising from stepwise genetic mutations of the myeloid lineage. cAMP response element-binding protein (CREB) is a nuclear transcription factor, which plays a key role in the multistep process of leukemogenesis, thus emerging as an attractive potential drug target for AML treatment. Since epigenetic dysregulations, such as DNA methylation, histone modifications, as well as chromatin remodeling, are a frequent occurrence in AML, an increasing and selective number of epi-drugs are emerging as encouraging therapeutic agents. Here, we demonstrate that the histone lysine demethylases (KDMs) JMJD3/UTX inhibitor GSKJ4 results in both proliferation decrease and CREB protein downregulation in AML cells. We found that GSKJ4 clearly decreases CREB protein, but not CREB mRNA levels. By cycloheximide assay, we provide evidence that GSKJ4 reduces CREB protein stability; moreover, proteasome inhibition largely counteracts the GSKJ4-induced CREB downregulation. Very interestingly, a rapid CREB phosphorylation at the Ser133 residue precedes CREB protein decrease in response to GSKJ4 treatment. In addition, protein kinase A (PKA) inhibition, but not extracellular signal-regulated kinase (ERK)1/2 inhibition, almost completely prevents both GSKJ4-induced p-Ser133-CREB phosphorylation and CREB protein downregulation. Overall, our study enforces the evidence regarding CREB as a potential druggable target, identifies the small epigenetic molecule GSKJ4 as an "inhibitor" of CREB, and encourages the design of future GSKJ4-based studies for the development of innovative approaches for AML therapy.

17.
Mar Drugs ; 19(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396307

RESUMO

Sessile organisms such as seaweeds, corals, and sponges continuously adapt to both abiotic and biotic components of the ecosystem. This extremely complex and dynamic process often results in different forms of competition to ensure the maintenance of an ecological niche suitable for survival. A high percentage of marine species have evolved to synthesize biologically active molecules, termed secondary metabolites, as a defense mechanism against the external environment. These natural products and their derivatives may play modulatory roles in the epigenome and in disease-associated epigenetic machinery. Epigenetic modifications also represent a form of adaptation to the environment and confer a competitive advantage to marine species by mediating the production of complex chemical molecules with potential clinical implications. Bioactive compounds are able to interfere with epigenetic targets by regulating key transcriptional factors involved in the hallmarks of cancer through orchestrated molecular mechanisms, which also establish signaling interactions of the tumor microenvironment crucial to cancer phenotypes. In this review, we discuss the current understanding of secondary metabolites derived from marine organisms and their synthetic derivatives as epigenetic modulators, highlighting advantages and limitations, as well as potential strategies to improve cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/uso terapêutico , Produtos Biológicos/metabolismo , Produtos Biológicos/uso terapêutico , Ecossistema , Epigênese Genética/efeitos dos fármacos , Animais , Antozoários , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Epigênese Genética/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fitoterapia/métodos , Fitoterapia/tendências , Poríferos , Alga Marinha
18.
Mar Drugs ; 17(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683792

RESUMO

Microalgae are an excellent source of valuable compounds for nutraceutical and cosmeceutical applications. These photosynthesizing microorganisms are amenable for large-scale production, thus overcoming the bottleneck of biomass supply for chemical and activity characterization of bioactive compounds. This characteristic has recently also prompted the screening of microalgae for potential pharmaceutical applications. Here, we show that monoacylglycerides (MAGs) purified from the marine diatom Skeletonema marinoi have selective cytotoxic activity against the haematological cancer cell line U-937 and colon cancer cell line HCT-116 compared to normal MePR-2B cells. LC-MS analysis of the raw extract revealed that in their natural form, MAGs occur as 2-monoacyl derivatives and include mainly C16 and C20 analogues, but they are converted into the corresponding 1-isomers during purification processes. Pure compounds along with the synthetic 1-monoarachidonoylglycerol tested on HCT-116 and U-937 tumor cell lines induced cell death via apoptosis. The mechanism of action was investigated, and we show that it involves the induction of apoptosis through caspase 3/7 activation. These findings pave the way for the possible use of these molecules as potential anticancer agents or as precursors for the generation of new and more potent and selective compounds against tumor cells.


Assuntos
Antineoplásicos/farmacologia , Diatomáceas/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microalgas
20.
FEBS Lett ; 593(18): 2574-2584, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254352

RESUMO

Acute myeloid leukemia (AML) arises from a complex sequence of biological and finely orchestrated events that are still poorly understood. Increasingly, epigenetic studies are providing exciting findings that may be exploited in promising and personalized cutting-edge therapies. A more appropriate and broader screening of possible players in cancer could identify a master molecular mechanism in AML. Here, we build on our previously published study by evaluating a histone deacetylase (HDAC)2-mediated miRNA regulatory network in U937 leukemic cells. Following a comparative miRNA profiling analysis in genetically and enzymatically HDAC2-downregulated AML cells, we identified miR-96-5p and miR-92a-3p as potential regulators in AML etiopathology by targeting defined genes. Our findings support the potentially beneficial role of alternative physiopathological interventions.


Assuntos
Histona Desacetilase 2/metabolismo , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Genes MHC da Classe II/genética , Humanos , Leucemia Mieloide Aguda/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA