Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cells ; 11(16)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36010633

RESUMO

Diet is a critical environmental factor affecting breast cancer risk, and recent evidence shows that dietary exposures during early development can affect lifetime mammary cancer susceptibility. To elucidate the underlying mechanisms, we used our established crossover feeding mouse model, where exposure to a high-fat and high-sugar (HFHS) diet during defined developmental windows determines mammary tumor incidence and latency in carcinogen-treated mice. Mammary tumor incidence is significantly increased in mice receiving a HFHS post-weaning diet (high-tumor mice, HT) compared to those receiving a HFHS diet during gestation (low-tumor mice, LT). The current study revealed that the mammary stem cell (MaSC) population was significantly increased in mammary glands from HT compared to LT mice. Igf1 expression was increased in mammary stromal cells from HT mice, where it promoted MaSC self-renewal. The increased Igf1 expression was induced by DNA hypomethylation of the Igf1 Pr1 promoter, mediated by a decrease in Dnmt3b levels. Mammary tissues from HT mice also had reduced levels of Igfbp5, leading to increased bioavailability of tissue Igf1. This study provides novel insights into how early dietary exposures program mammary cancer risk, demonstrating that effective dietary intervention can reduce mammary cancer incidence.


Assuntos
Exposição Dietética , Neoplasias Mamárias Animais , Animais , Carcinógenos , Dieta , Neoplasias Mamárias Animais/metabolismo , Camundongos , Células-Tronco/metabolismo
2.
Immunol Cell Biol ; 98(8): 626-638, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479655

RESUMO

Psoriasis (PS) and atopic dermatitis (AD) are common inflammatory skin diseases characterized by an imbalance in specific T-cell subsets, resulting in a specific cytokine profile in patients. Obtaining models closely resembling both pathologies along with a relevant clinical impact is crucial for the development of new therapies because of the high prevalence of these diseases. Single-gene mouse models developed until now do not fully reflect the complexity of these disorders, in part not only because of inherent differences between mice and humans but also because of the multifactorial nature of these pathologies. The skin-humanized mouse model developed by our group, based on a tissue engineering approach, has been used to test therapeutic strategies, although this methodology is still technically challenging and not widely available. The skin-humanized mouse models for PS and AD reproduce human skin phenotypes, providing valuable tools for drug development and testing in the preclinical setting. The tissue engineering approach allows the development of personalized medicine, covering the broad genotypic spectrum of these pathologies. This review highlights the main differences between available murine models focusing on the tissue-specific immunity of PS and AD. We discuss their contribution to unravel the complex pathophysiology of these diseases and to translate this knowledge into more accurate therapies.


Assuntos
Dermatite Atópica , Modelos Animais de Doenças , Imunidade , Psoríase , Animais , Citocinas , Dermatite Atópica/imunologia , Humanos , Camundongos , Psoríase/imunologia , Pele , Subpopulações de Linfócitos T
3.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178458

RESUMO

The role of stroma is fundamental in the development and behavior of epithelial tumors. In this regard, limited growth of squamous cell carcinomas (SCC) or cell-lines derived from them has been achieved in immunodeficient mice. Moreover, lack of faithful recapitulation of the original human neoplasia complexity is often observed in xenografted tumors. Here, we used tissue engineering techniques to recreate a humanized tumor stroma for SCCs grafted in host mice, by combining CAF (cancer associated fibroblasts)-like cells with a biocompatible scaffold. The stroma was either co-injected with epithelial cell lines derived from aggressive SCC or implanted 15 days before the injection of the tumoral cells, to allow its vascularization and maturation. None of the mice injected with the cell lines without stroma were able to develop a SCC. In contrast, tumors were able to grow when SCC cells were injected into previously established humanized stroma. Histologically, all of the regenerated tumors were moderately differentiated SCC with a well-developed stroma, resembling that found in the original human neoplasm. Persistence of human stromal cells was also confirmed by immunohistochemistry. In summary, we provide a proof of concept that humanized tumor stroma, generated by tissue engineering, can facilitate the development of epithelial tumors in immunodeficient mice.


Assuntos
Carcinoma de Células Escamosas/patologia , Xenoenxertos/patologia , Transplante de Neoplasias/patologia , Células Estromais/patologia , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/patologia , Feminino , Fibroblastos/patologia , Humanos , Camundongos , Neovascularização Patológica/patologia , Engenharia Tecidual/métodos , Transplante Heterólogo/métodos
4.
Orphanet J Rare Dis ; 14(1): 183, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340837

RESUMO

BACKGROUND: Kindler Syndrome (KS) is a rare genodermatosis characterized by skin fragility, skin atrophy, premature aging and poikiloderma. It is caused by mutations in the FERMT1 gene, which encodes kindlin-1, a protein involved in integrin signalling and the formation of focal adhesions. Several reports have shown the presence of non-melanoma skin cancers in KS patients but a systematic study evaluating the risk of these tumors at different ages and their potential outcome has not yet been published. We have here addressed this condition in a retrospective study of 91 adult KS patients, characterizing frequency, metastatic potential and body distribution of squamous cell carcinoma (SCC) in these patients. SCC developed in 13 of the 91 patients. RESULTS: The youngest case arose in a 29-year-old patient; however, the cumulative risk of SCC increased to 66.7% in patients over 60 years of age. The highly aggressive nature of SCCs in KS was confirmed showing that 53.8% of the patients bearing SCCs develop metastatic disease. Our data also showed there are no specific mutations that correlate directly with the development of SCC; however, the mutational distribution along the gene appears to be different in patients bearing SCC from SCC-free patients. The body distribution of the tumor appearance was also unique and different from other bullous diseases, being concentrated in the hands and around the oral cavity, which are areas of high inflammation in this disease. CONCLUSIONS: This study characterizes SCCs in the largest series of KS patients reported so far, showing the high frequency and aggressiveness of these tumors. It also describes their particular body distribution and their relationship with mutations in the FERMT-1 gene. These data reinforce the need for close monitoring of premalignant or malignant lesions in KS patients.


Assuntos
Vesícula/complicações , Epidermólise Bolhosa/complicações , Doenças Periodontais/complicações , Transtornos de Fotossensibilidade/complicações , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Adolescente , Adulto , Idoso , Vesícula/genética , Epidermólise Bolhosa/genética , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Doenças Periodontais/genética , Transtornos de Fotossensibilidade/genética , Neoplasias Cutâneas/etiologia , Adulto Jovem
5.
Oncogene ; 38(18): 3535-3550, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30651598

RESUMO

Female breast cancer (BrCa) is the most common noncutaneous cancer among women in the United States. Human epidemiological studies reveal that a p53 single-nucleotide polymorphism (SNP) at codon 72, encoding proline (P72) or arginine (R72), is associated with differential risk of several cancers, including BrCa. However, the molecular mechanisms by which these variants affect mammary tumorigenesis remain unresolved. To investigate the effects of this polymorphism on susceptibility to mammary cancer, we used a humanized p53 mouse model, homozygous for either P72 or R72. Our studies revealed that R72 mice had a significantly higher mammary tumor incidence and reduced latency in both DMBA-induced and MMTV-Erbb2/Neu mouse mammary tumor models compared to P72 mice. Analyses showed that susceptible mammary glands from E-R72 (R72 x MMTV-Erbb2/Neu) mice developed a senescence-associated secretory phenotype (SASP) with influx of proinflammatory macrophages, ultimately resulting in chronic, protumorigenic inflammation. Mammary tumors arising in E-R72 mice also had an increased influx of tumor-associated macrophages, contributing to angiogenesis and elevated tumor growth rates. These results demonstrate that the p53 R72 variant increased susceptibility to mammary tumorigenesis through chronic inflammation.


Assuntos
Carcinogênese/genética , Códon/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/patologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Macrófagos/patologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Receptor ErbB-2/genética
6.
Cancer Prev Res (Phila) ; 10(10): 553-562, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28904060

RESUMO

Obesity and alterations in metabolic programming from early diet exposures can affect the propensity to disease in later life. Through dietary manipulation, developing mouse pups were exposed to a hyperinsulinemic, hyperglycemic milieu during three developmental phases: gestation, lactation, and postweaning. Analyses showed that a postweaning high fat/high sugar (HF/HS) diet had the main negative effect on adult body weight, glucose tolerance, and insulin resistance. However, dimethylbenz[a]anthracene (DMBA)-induced carcinogenesis revealed that animals born to a mother fed a HF/HS gestation diet, nursed by a mother on a mildly diet-restricted, low fat/low sugar diet (DR) and weaned onto a HF/HS diet (HF/DR/HF) had the highest mammary tumor incidence, while HF/HF/DR had the lowest tumor incidence. Cox proportional hazards analysis showed that a HF/HS postweaning diet doubled mammary cancer risk, and a HF/HS diet during gestation and postweaning increased risk 5.5 times. Exposure to a HF/HS diet during gestation, when combined with a postweaning DR diet, had a protective effect, reducing mammary tumor risk by 86% (HR = 0.142). Serum adipocytokine analysis revealed significant diet-dependent differences in leptin/adiponectin ratio and IGF-1. Flow cytometry analysis of cells isolated from mammary glands from a high tumor incidence group, DR/HF/HF, showed a significant increase in the size of the mammary stem cell compartment compared with a low tumor group, HF/HF/DR. These results indicate that dietary reprogramming induces an expansion of the mammary stem cell compartment during mammary development, increasing likely carcinogen targets and mammary cancer risk. Cancer Prev Res; 10(10); 553-62. ©2017 AACRSee related editorial by Freedland, p. 551-2.


Assuntos
Carcinogênese/metabolismo , Dieta Hiperlipídica/efeitos adversos , Açúcares da Dieta/efeitos adversos , Glândulas Mamárias Animais/embriologia , Neoplasias Mamárias Animais/etiologia , Neoplasias Mamárias Experimentais/metabolismo , Células-Tronco/patologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Adiponectina/sangue , Animais , Peso Corporal/fisiologia , Dieta com Restrição de Gorduras , Comportamento Alimentar , Feminino , Resistência à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/análise , Lactação/metabolismo , Leptina/sangue , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/sangue , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/prevenção & controle , Neoplasias Mamárias Experimentais/sangue , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/prevenção & controle , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos SENCAR , Obesidade/etiologia , Obesidade/metabolismo , Fatores de Risco , Fatores de Tempo
7.
Exp Dermatol ; 25(4): 269-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26739954

RESUMO

Epidermolysis bullosa with pyloric atresia (EB-PA) is a rare autosomal recessive hereditary disease with a variable prognosis from lethal to very mild. EB-PA is classified into Simplex form (EBS-PA: OMIM #612138) and Junctional form (JEB-PA: OMIM #226730), and it is caused by mutations in ITGA6, ITGB4 and PLEC genes. We report the analysis of six patients with EB-PA, including two dizygotic twins. Skin immunofluorescence epitope mapping was performed followed by PCR and direct sequencing of the ITGB4 gene. Two of the patients presented with non-lethal EB-PA associated with missense ITGB4 gene mutations. For the other four, early postnatal demise was associated with complete lack of ß4 integrin due to a variety of ITGB4 novel mutations (2 large deletions, 1 splice-site mutation and 3 missense mutations). One of the deletions spanned 278 bp, being one of the largest reported to date for this gene. Remarkably, we also found for the first time a founder effect for one novel mutation in the ITGB4 gene. We have identified 6 novel mutations in the ITGB4 gene to be added to the mutation database. Our results reveal genotype-phenotype correlations that contribute to the molecular understanding of this heterogeneous disease, a pivotal issue for prognosis and for the development of novel evidence-based therapeutic options for EB management.


Assuntos
Displasia Ectodérmica/genética , Integrina beta4/genética , Deleção de Sequência , Biópsia , Pré-Escolar , Análise Mutacional de DNA , Displasia Ectodérmica/diagnóstico , Mapeamento de Epitopos , Epitopos/química , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Queratinócitos/citologia , Masculino , Repetições de Microssatélites/genética , Microscopia de Fluorescência , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase , Prognóstico , Análise de Sequência de DNA , Gêmeos Dizigóticos
8.
J Invest Dermatol ; 135(12): 3133-3143, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26288350

RESUMO

Here we describe a spontaneous mutation in the Zdhhc13 (zinc finger, DHHC domain containing 13) gene (also called Hip14l), one of 24 genes encoding palmitoyl acyltransferase (PAT) enzymes in the mouse. This mutation (Zdhhc13luc) was identified as a nonsense base substitution, which results in a premature stop codon that generates a truncated form of the ZDHHC13 protein, representing a potential loss-of-function allele. Homozygous Zdhhc13luc/Zdhhc13luc mice developed generalized hypotrichosis, associated with abnormal hair cycle, epidermal and sebaceous gland hyperplasia, hyperkeratosis, and increased epidermal thickness. Increased keratinocyte proliferation and accelerated transit from basal to more differentiated layers were observed in mutant compared with wild-type (WT) epidermis in untreated skin and after short-term 12-O-tetradecanoyl-phorbol-13-acetate treatment and acute UVB exposure. Interestingly, this epidermal phenotype was associated with constitutive activation of NF-κB (RelA) and increased neutrophil recruitment and elastase activity. Furthermore, tumor multiplicity and malignant progression of papillomas after chemical skin carcinogenesis were significantly higher in mutant mice than WT littermates. To our knowledge, this is the first report of a protective role for PAT in skin carcinogenesis.


Assuntos
Aciltransferases/genética , Predisposição Genética para Doença , Mutação , Neoplasias Cutâneas/genética , Animais , Bromodesoxiuridina/metabolismo , Códon de Terminação , Células Epidérmicas , Queratinócitos/fisiologia , Elastase de Leucócito/metabolismo , Camundongos , NF-kappa B/fisiologia , Células NIH 3T3 , Infiltração de Neutrófilos , Fenótipo , Neoplasias Cutâneas/etiologia
10.
Orphanet J Rare Dis ; 9: 211, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25528446

RESUMO

BACKGROUND: Kindler Syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering, photosensitivity, premature aging, and propensity to skin cancer. In spite of the knowledge underlying cause of this disease involving mutations of FERMT1 (fermitin family member 1), and efforts to characterize genotype-phenotype correlations, the clinical variability of this genodermatosis is still poorly understood. In addition, several pathognomonic features of KS, not related to skin fragility such as aging, inflammation and cancer predisposition have been strongly associated with oxidative stress. Alterations of the cellular redox status have not been previously studied in KS. Here we explored the role of oxidative stress in the pathogenesis of this rare cutaneous disease. METHODS: Patient-derived keratinocytes and their respective controls were cultured and classified according to their different mutations by PCR and western blot, the oxidative stress biomarkers were analyzed by spectrophotometry and qPCR and additionally redox biosensors experiments were also performed. The mitochondrial structure and functionality were analyzed by confocal microscopy and electron microscopy. RESULTS: Patient-derived keratinocytes showed altered levels of several oxidative stress biomarkers including MDA (malondialdehyde), GSSG/GSH ratio (oxidized and reduced glutathione) and GCL (gamma-glutamyl cysteine ligase) subunits. Electron microscopy analysis of both, KS skin biopsies and keratinocytes showed marked morphological mitochondrial abnormalities. Consistently, confocal microscopy studies of mitochondrial fluorescent probes confirmed the mitochondrial derangement. Imbalance of oxidative stress biomarkers together with abnormalities in the mitochondrial network and function are consistent with a pro-oxidant state. CONCLUSIONS: This is the first study to describe mitochondrial dysfunction and oxidative stress involvement in KS.


Assuntos
Vesícula/diagnóstico , Vesícula/metabolismo , Epidermólise Bolhosa/diagnóstico , Epidermólise Bolhosa/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/fisiologia , Doenças Periodontais/diagnóstico , Doenças Periodontais/metabolismo , Transtornos de Fotossensibilidade/diagnóstico , Transtornos de Fotossensibilidade/metabolismo , Adolescente , Idoso de 80 Anos ou mais , Vesícula/fisiopatologia , Células Cultivadas , Criança , Pré-Escolar , Epidermólise Bolhosa/fisiopatologia , Feminino , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Doenças Periodontais/fisiopatologia , Transtornos de Fotossensibilidade/fisiopatologia
11.
Exp Dermatol ; 22(9): 601-3, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23947675

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is caused by deficiency of type VII collagen due to COL7A1 mutations such as c.6527insC, recurrently found in the Spanish RDEB population. Assessment of clonal correction-based therapeutic approaches for RDEB requires large expansions of cells, exceeding the replication capacity of human primary keratinocytes. Thus, immortalized RDEB cells with enhanced proliferative abilities would be valuable. Using either the SV40 large T antigen or papillomavirus HPV16-derived E6-E7 proteins, we immortalized and cloned RDEB keratinocytes carrying the c.6527insC mutation. Clones exhibited high proliferative and colony-forming features. Cytogenetic analysis revealed important differences between T antigen-driven and E6-E7-driven immortalization. Immortalized cells responded to differentiation stimuli and were competent for epidermal regeneration and recapitulation of the blistering RDEB phenotype in vivo. These features make these cell lines useful to test novel therapeutic approaches including those aimed at editing mutant COL7A1.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Queratinócitos/metabolismo , Mutação , Animais , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , Epidermólise Bolhosa Distrófica/patologia , Terapia Genética , Xenoenxertos , Homozigoto , Humanos , Queratinócitos/transplante , Camundongos , Modelos Genéticos , Regeneração
12.
Exp Dermatol ; 22(3): 195-201, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23489422

RESUMO

Cutaneous diabetic wounds greatly affect the quality of life of patients, causing a substantial economic impact on the healthcare system. The limited clinical success of conventional treatments is mainly attributed to the lack of knowledge of the pathogenic mechanisms related to chronic ulceration. Therefore, management of diabetic ulcers remains a challenging clinical issue. Within this context, reliable animal models that recapitulate situations of impaired wound healing have become essential. In this study, we established a new in vivo humanised model of delayed wound healing in a diabetic context that reproduces the main features of the human disease. Diabetes was induced by multiple low doses of streptozotocin in bioengineered human-skin-engrafted immunodeficient mice. The significant delay in wound closure exhibited in diabetic wounds was mainly attributed to alterations in the granulation tissue formation and resolution, involving defects in wound bed maturation, vascularisation, inflammatory response and collagen deposition. In the new model, a cell-based wound therapy consisting of the application of plasma-derived fibrin dermal scaffolds containing fibroblasts consistently improved the healing response by triggering granulation tissue maturation and further providing a suitable matrix for migrating keratinocytes during wound re-epithelialisation. The present preclinical wound healing model was able to shed light on the biological processes responsible for the improvement achieved, and these findings can be extended for designing new therapeutic approaches with clinical relevance.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Fibroblastos/fisiologia , Regeneração/fisiologia , Fenômenos Fisiológicos da Pele , Cicatrização/fisiologia , Animais , Bioengenharia/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Feminino , Fibroblastos/citologia , Humanos , Camundongos , Camundongos Nus , Estreptozocina/efeitos adversos , Fatores de Tempo , Alicerces Teciduais , Transplante Heterólogo
13.
Mol Carcinog ; 52(6): 446-58, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22290600

RESUMO

The prevalence of obesity, an established risk and progression factor for postmenopausal breast cancer, remains high in US women. Activation of Akt/mammalian target of rapamycin (mTOR) signaling plays a key role in the obesity-breast cancer link. However, the impact of weight normalization in obese postmenopausal women on breast tumorigenesis and/or Akt/mTOR activation is poorly characterized. To model this, ovariectomized female C57BL/6 mice were fed a control diet (n = 20), a calorie restriction (CR) regimen (n = 20), or a diet-induced obesity (DIO) diet (n = 30). At week 17, DIO mice were switched to control diet, resulting in formerly obese (FOb) mice with weights identical to the controls by week 20. MMTV-Wnt-1 mammary tumor cells were injected at 20 wk into each mouse. Two weeks post-injection, vehicle or the mTOR inhibitor RAD001 at 10 or 15 mg/kg body weight (n = 10/diet group) was administered by gavage twice/week until termination. Relative to controls, CR mice had decreased (and DIO mice had increased) serum insulin-like growth factor-1 (IGF-1) and phosphorylation of Akt/mTOR pathway components. RAD001 decreased tumor growth in the CR, control, and FOb mice. Wnt-1 tumor cells treated in vitro with serum from mice from each group established that diet-dependent circulating factors contribute to tumor growth and invasiveness. These findings suggest weight normalization in obese mice does not immediately reverse tumor progression or Akt/mTOR activation. Treatment with RAD001 blocked mammary tumor development and mTOR activation observed in the FOb mice, suggesting combination of lifestyle and pharmacologic strategies may be effective for breaking the obesity-breast cancer link.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Mamárias Experimentais/complicações , Neoplasias Mamárias Experimentais/tratamento farmacológico , Obesidade/complicações , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Dieta , Everolimo , Feminino , Hormônios/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/uso terapêutico , Redução de Peso/efeitos dos fármacos , Proteína Wnt1/metabolismo
14.
Exp Dermatol ; 21(3): 217-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22379968

RESUMO

Strains of mice vary in their susceptibility to ultra-violet (UV) radiation-induced skin tumors. Some strains of hairless mice (homozygous for the spontaneous Hr(hr) mutation) are particularly susceptible to these tumors. The skin tumors that develop in hairless mice resemble, both at the morphologic and molecular levels, UV-induced squamous cell carcinomas (SCC) and their precursors in human. The most commonly employed hairless mice belong to the SKH1 stock. However, these mice are outbred and their genetic background is not characterized, which makes them a poor model for genetic studies. We have developed a new inbred strain from outbred SKH1 mice that we named SKHIN/Sprd (now at generation F31). In order to characterize the genetic background of this new strain, we genotyped a cohort of mice at F30 with 92 microsatellites and 140 single nucleotide polymorphisms (SNP) evenly distributed throughout the mouse genome. We also exposed SKHIN/Sprd mice to chronic UV irradiation and showed that they are as susceptible to UV-induced skin carcinogenesis as outbred SKH1 mice. In addition, we proved that, albeit with low efficiency, inbred SKHIN/Sprd mice are suitable for transgenic production by classical pronuclear microinjection. This new inbred strain will be useful for the development of transgenic and congenic strains on a hairless inbred background as well as the establishment of syngeneic tumor cell lines. These new tools can potentially help elucidate a number of features of the cutaneous response to UV irradiation in humans, including the effect of genetic background and modifier genes.


Assuntos
Camundongos Pelados/genética , Modelos Animais , Neoplasias Induzidas por Radiação/genética , Neoplasias Cutâneas/genética , Animais , Modelos Animais de Doenças , Camundongos , Neoplasias Induzidas por Radiação/etiologia , Raios Ultravioleta
15.
Mol Carcinog ; 51(4): 352-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21538579

RESUMO

Lysosomal cysteine protease cathepsin L (CTSL) is believed to play a role in tumor progression and is considered a marker for clinically invasive tumors. Studies from our laboratory using the classical mouse skin carcinogenesis model, with 7,12-dimethyl-benz[a]anthracene (DMBA) for initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) for promotion, showed that expression of CTSL is increased in papillomas and squamous cell carcinomas (SCC). We also carried out carcinogenesis studies using Ctsl-deficient nackt (nkt) mutant mice on three different inbred backgrounds. Unexpectedly, the multiplicity of papillomas was significantly higher in Ctsl-deficient than in wild-type mice on two unrelated backgrounds. Topical applications of TPA or DMBA alone to the skin of nkt/nkt mice did not induce papillomas, and there was no increase in spontaneous tumors in nkt/nkt mice on any of the three inbred backgrounds. Reduced epidermal cell proliferation in Ctsl-deficient nkt/nkt mice after TPA treatment suggested that they are not more sensitive than wild-type mice to TPA promotion. We also showed that deficiency of CTSL delays terminal differentiation of keratinocytes, and we propose that decreased elimination of initiated cells is at least partially responsible for the increased papilloma formation in the nackt model.


Assuntos
Catepsina L/fisiologia , Neoplasias Cutâneas/prevenção & controle , Administração Tópica , Alelos , Animais , Linfócitos T CD4-Positivos/citologia , Proliferação de Células , Feminino , Genótipo , Queratinócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Camundongos Knockout , Papiloma/metabolismo , Polimorfismo Genético , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol/administração & dosagem
16.
Mol Carcinog ; 51(12): 973-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22006370

RESUMO

Studies show that elevated insulin-like growth factor-1 (IGF-1) levels are associated with an increased risk of breast cancer; however, mechanisms through which IGF-1 promotes mammary tumorigenesis in vivo have not been fully elucidated. To assess the possible involvement of COX-2 signaling in the pro-tumorigenic effects of IGF-1 in mammary glands, we used the unique BK5.IGF-1 mouse model in which transgenic (Tg) mice have significantly increased incidence of spontaneous and DMBA-induced mammary cancer compared to wild type (WT) littermates. Studies revealed that COX-2 expression was significantly increased in Tg mammary glands and tumors, compared to age-matched WTs. Consistent with this, PGE(2) levels were also increased in Tg mammary glands. Analysis of expression of the EP receptors that mediate the effects of PGE(2) showed that among the four G-protein-coupled receptors, EP3 expression was elevated in Tg glands. Up-regulation of the COX-2/PGE(2) /EP3 pathway was accompanied by increased expression of VEGF and a striking enhancement of angiogenesis in IGF-1 Tg mammary glands. Treatment with celecoxib, a selective COX-2 inhibitor, caused a 45% reduction in mammary PGE(2) levels, attenuated the influx of mast cells and reduced vascularization in Tg glands. These findings indicate that the COX-2/PGE(2) /EP3 signaling pathway is involved in IGF-1-stimulated mammary tumorigenesis and that COX-2-selective inhibitors may be useful in the prevention or treatment of breast cancer associated with elevated IGF-1 levels in humans. © 2011 Wiley Periodicals, Inc.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Fator de Crescimento Insulin-Like I/fisiologia , Glândulas Mamárias Animais/enzimologia , Transdução de Sinais/fisiologia , Animais , Celecoxib , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Feminino , Glândulas Mamárias Animais/irrigação sanguínea , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Neovascularização Patológica , Pirazóis/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Prostaglandina E/metabolismo , Sulfonamidas/farmacologia
17.
J Clin Invest ; 122(1): 192-204, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22182837

RESUMO

Insulin like growth factor-1 (IGF-1) stimulates increased proliferation and survival of mammary epithelial cells and also promotes mammary tumorigenesis. To study the effects of IGF-1 on the mammary gland in vivo, we used BK5.IGF-1 transgenic (Tg) mice. In these mice, IGF-1 overexpression is controlled by the bovine keratin 5 promoter and recapitulates the paracrine exposure of breast epithelium to stromal IGF-1 that is seen in women. Studies have shown that BK5.IGF-1 Tg mice are more susceptible to mammary tumorigenesis than wild-type littermates. Investigation of the mechanisms underlying increased mammary cancer risk, reported here, revealed that IGF-1 preferentially activated the PI3K/Akt pathway in glands from prepubertal Tg mice, resulting in increased cyclin D1 expression and hyperplasia. However, in glands from postpubertal Tg mice, a pathway switch occurred and activation of the Ras/Raf/MAPK pathway predominated, without increased cyclin D1 expression or proliferation. We further showed that in prepubertal Tg glands, signaling was mediated by formation of an ERα/IRS-1 complex, which activated IRS-1 and directed signaling via the PI3K/Akt pathway. Conversely, in postpubertal Tg glands, reduced ERα expression failed to stimulate formation of the ERα/IRS-1 complex, allowing signaling to proceed via the alternate Ras/Raf/MAPK pathway. These in vivo data demonstrate that changes in ERα expression at different stages of development direct IGF-1 signaling and the resulting tissue responses. As ERα levels are elevated during the prepubertal and postmenopausal stages, these may represent windows of susceptibility during which increased IGF-1 exposure maximally enhances breast cancer risk.


Assuntos
Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Animais , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Bovinos , Proliferação de Células , Ciclina D1/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/deficiência , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/farmacologia , Sistema de Sinalização das MAP Quinases , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Comunicação Parácrina , Proteínas Proto-Oncogênicas c-raf/metabolismo , Maturidade Sexual , Transdução de Sinais
18.
Methods Mol Biol ; 821: 215-25, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22125067

RESUMO

mTOR is a key regulator of cell growth and size, and its activity is often dysregulated in a wide variety of diseases. The mTOR signaling pathway is also a therapeutic target for many diseases, including cancer. Immunohistochemistry is a powerful method to assess mTOR activity in clinical/histological samples, however, care should be taken in choosing the targets for determining mTOR activity due to the complexity of its regulation. This chapter describes the most up-to-date methods for visualizing mTOR activity by immunohistochemistry using commercially available antibodies, including considerations for validating new antibodies for assessing mTOR signaling.


Assuntos
Imuno-Histoquímica/métodos , Serina-Treonina Quinases TOR/análise , Animais , Anticorpos Monoclonais/imunologia , Regulação da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Distribuição Tecidual
19.
Cell Cycle ; 10(2): 268-77, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21224724

RESUMO

It is well established that protein kinase C (PKC) isozymes play distinctive roles in mitogenic and survival signaling as well as in cancer progression. PKCε, the product of the PRKCE gene, is up-regulated in various types of cancers including prostate, lung and breast cancer. To address a potential role for PKCs in prostate cancer progression we generated three mouse transgenic lines expressing PKCα, PKCδ, or PKCε in the prostate epithelium under the control of the rat probasin (PB) promoter. Whereas PB-PKCε and PB-PKCδ mice did not show any evident phenotype, PB-PKCε mice developed prostate hyperplasia as well as prostate intraepithelial neoplasia (PIN) that displayed enhanced phospho-Akt, phospho-S6, and phospho-Stat3 levels, as well as enhanced resistance to apoptotic stimuli. PKCε overexpression was insufficient to drive neoplastic changes in the mouse prostate. Notably, overexpression of PKCε by adenoviral means in normal immortalized RWPE-1 prostate cells confers a growth advantage and hyperactivation of Erk and Akt. Our results argue for a causal link between PKCε overexpression and prostate cancer development.


Assuntos
Lesões Pré-Cancerosas/enzimologia , Neoplasia Prostática Intraepitelial/enzimologia , Neoplasias da Próstata/enzimologia , Proteína Quinase C-épsilon/metabolismo , Proteína de Ligação a Androgênios/genética , Animais , Apoptose , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Lesões Pré-Cancerosas/patologia , Regiões Promotoras Genéticas , Próstata/enzimologia , Próstata/patologia , Hiperplasia Prostática/patologia , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/patologia , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas/metabolismo , Fator de Transcrição STAT3/metabolismo
20.
Breast Cancer Res Treat ; 130(2): 399-408, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21191649

RESUMO

Clinical studies show that estrogen receptor-α (ER) expressing tumors tend to have better prognosis, respond to antiestrogen therapy and have wild-type p53. Conversely, tumors with inactivating mutations in p53 tend to have worse outcomes and to be ER-negative and unresponsive to antihormone treatment. Previous studies from our laboratory have shown that p53 regulates ER expression transcriptionally, by binding the ER promoter and forming a complex with CARM1, CBP, c-Jun, RNA polymerase II and Sp1. In this study, the MMTV-Wnt-1 transgenic mouse model was used to demonstrate that p53 regulation of ER expression and function is not solely an in vitro phenomenon, but it is also operational in mammary tumorigenesis in vivo. The expression of ER and the ability to respond to tamoxifen were determined in mammary tumors arising in p53 wild type (WT) or p53 heterozygous (HT) animals carrying the Wnt-1 transgene. In p53 WT mice, development of ER-positive tumors was delayed by tamoxifen treatment, while tumors arising in p53 HT mice had significantly reduced levels of ER and were not affected by tamoxifen. P53 null tumors were also found in the p53 HT mice and these tumors were ER-negative. ER expression was upregulated in mouse mammary tumor cell lines following transfection with WT p53 or treatment with doxorubicin. These data demonstrate that p53 regulates ER expression in vivo, and affects response to tamoxifen. Results also provide an explanation for the concordant relationship between these prognostic proteins in human breast tumors.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Neoplasias Mamárias Experimentais/genética , Tamoxifeno/uso terapêutico , Proteína Supressora de Tumor p53/genética , Animais , Transformação Celular Neoplásica/genética , Receptor alfa de Estrogênio/genética , Feminino , Expressão Gênica , Genótipo , Heterozigoto , Perda de Heterozigosidade , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Supressora de Tumor p53/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA