Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(15): 7612-7625, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38512302

RESUMO

On-surface synthesis often proceeds under kinetic control due to the irreversibility of key reaction steps, rendering kinetic studies pivotal. The accurate quantification of reaction rates also bears potential for unveiling reaction mechanisms. Temperature-Programmed X-ray Photoelectron Spectroscopy (TP-XPS) has emerged as an analytical tool for kinetic studies with splendid chemical and sufficient temporal resolution. Here, we demonstrate that the common linear temperature ramps lead to fitting ambiguities. Moreover, pinpointing the reaction order remains intricate, although this key parameter entails information on atomistic mechanisms. Yet, TP-XPS experiments with a stepped temperature profile comprised of isothermal segments facilitate the direct quantification of rate constants from fitting time courses. Thereby, rate constants are obtained for a series of temperatures, which allows independent extraction of both activation energies and pre-exponentials from Arrhenius plots. By using two analogous doubly versus triply brominated aromatic model compounds, we found that their debromination on Ag(111) is best modeled by second-order kinetics and thus proceeds via the involvement of a second, non-obvious reactant. Accordingly, we propose that debromination is activated by surface supplied Ag adatoms. This hypothesis is supported by Density Functional Theory (DFT) calculations. We foresee auspicious prospects for this TP-XPS variant for further exploring the kinetics and mechanisms of on-surface reactions.

2.
ACS Nano ; 18(1): 849-857, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147033

RESUMO

Two-dimensional conjugated polymers (2DCPs) are an emerging class of materials that exhibit properties similar to graphene yet do not have the limitation of zero bandgap. On-surface synthesis provides exceptional control on the polymerization reaction, allowing tailoring properties by choosing suitable monomers. Heteroatom-substituted triangulene 2DCPs constitute a playing ground for such a design and are predicted to exhibit graphene-like band structures with high charge mobility and characteristic Dirac cones in conduction or valence states. However, measuring these properties experimentally is challenging and requires long-range-ordered polymers, preferably with an epitaxial relationship with the substrate. Here, we investigate the electronic properties of a mesoscale-ordered carbonyl-bridged triphenylamine 2DCP (P2TANGO) and demonstrate the presence of a Dirac cone by combining angle-resolved photoemission spectroscopy (ARPES) with density functional theory (DFT) calculations. Moreover, we measure the absolute energy position of the Dirac cone with respect to the vacuum level. We show that the bridging functionality of the triangulene (ether vs carbonyl) does not significantly perturb the band structure but strongly affects the positioning of the bands with respect to the Au(111) states and allows control of the ionization energy of the polymer. Our results provide proof of the controllable electronic properties of 2DCPs and bring us closer to their use in practical applications.

3.
Front Chem ; 11: 1251360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025060

RESUMO

Interleukin-6 (IL-6) plays a crucial role in autoimmunity and chronic inflammation. This study aims to develop a low-cost, simple-to-manufacture, and user-friendly label-free electrochemical point-of-care device for the rapid detection of IL-6 in patients with psoriasis. Precisely, a sandwich-based format immunosensor was developed using two primary antibodies (mAb-IL6 clone-5 and clone-7) and screen-printed electrodes modified with an inexpensive recycling electrochemical enhancing material, called biochar. mAb-IL6 clone-5 was used as a covalently immobilized capture bioreceptor on modified electrodes, and mAb-IL6 clone-7 was used to recognize the immunocomplex (Anti-IL6 clone-5 and IL-6) and form the sandwich. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conduct electrochemical characterization of the layer-by-layer assembly of the immunosensor, while square wave voltammetry (SWV) was used to perform the sensing. The developed immunosensor demonstrated robust analytical performance in buffer solution, with a wide linear range (LR) by varying from 2 to 250 pg/mL, a good limit of detection (LOD) of 0.78 pg/mL and reproducibility (RSD<7%). In addition, a spectrophotometric ELISA kit was employed to validate the results obtained with the label-free device by analyzing twenty-five serum samples from control and patients affected by psoriasis. A strong correlation in terms of pg/mL concentration of IL-6 was found comparing the two methods, with the advantage for our label-free biosensor of an ease use and a quicker detection time. Based on IL-6 levels, the proposed immunosensor is a dependable, non-invasive screening device capable of predicting disease onset, progression, and treatment efficacy.

4.
ACS Omega ; 8(18): 16471-16478, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179596

RESUMO

Sulfur-based molecules producing self-assembled monolayers on gold surfaces have long since become relevant functional molecular materials with many applications in biosensing, electronics, and nanotechnology. Among the various sulfur-containing molecules, the possibility to anchor a chiral sulfoxide to a metal surface has been scarcely investigated, despite this class of molecules being of great importance as ligands and catalysts. In this work, (R)-(+)-methyl p-tolyl sulfoxide was deposited on Au(111) and investigated by means of photoelectron spectroscopy and density functional theory calculations. The interaction with Au(111) leads to a partial dissociation of the adsorbate due to S-CH3 bond cleavage. The observed kinetics support the hypotheses that (R)-(+)-methyl p-tolyl sulfoxide adsorbs on Au(111) in two different adsorption arrangements endowed with different adsorption and reaction activation energies. The kinetic parameters related to the adsorption/desorption and reaction of the molecule on the Au(111) surface have been estimated.

5.
Biosens Bioelectron ; 213: 114467, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35760020

RESUMO

IL-6 detection is highly desirable since can monitor many diseases in humans and assess the response to treatments. Herein, two novel label-free voltammetric immunosensors for rapid and accurate interleukin-6 (IL-6) detection in human serum are presented. The immunosensors are fabricated by immobilising two different IL-6 antibodies, identified as mAb-IL-6 clone-5 and clone-7, on in-house produced screen-printed electrodes modified with inexpensive recycling biochar (Bio-SPEs). To ensure high structural fidelity and performance, an in-depth electrochemical characterization of the layer-by-layer assembly of the immunosensor was conducted by cyclic voltammetry (CV) and sensing was performed using square wave voltammetry (SWV). The two immunosensors showed good analytical performances in human serum, exhibiting a wide linear range (LR) between 26-125 and 30-138 pg/mL, a good limit of detection (LOD) of 4.8 and 5.4 pg/mL and selectivity for IL-6 over other common cytokines, including IL-1ß and TNF-α. Performance comparison of IL-6 immunosensors with those of a commercial spectrophotometric ELISA kit (LOD of 20 pg/mL, RSD% of 15%) denotes a better sensitivity and reproducibility of the proposed label-free devices, associated with a reduced detection time (30 min instead of more than 3 h for ELISA test). Furthermore, the proposed immunosensors were successfully applied in blood samples (with only a dilution of 1:100 v/v in PBS and without additional treatments) with good sensitivity (LOD of 14.3 pg/mL) and reproducibility (RSD% < 11%), thus paving the way for their application as viable diagnostic and therapeutic point-of-care tools alternative to the IL-6 detection techniques routinely used (ELISA and Western Blot).


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Análise Custo-Benefício , Técnicas Eletroquímicas , Eletrodos , Humanos , Imunoensaio , Interleucina-6 , Limite de Detecção , Reprodutibilidade dos Testes
6.
Nanomaterials (Basel) ; 11(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835549

RESUMO

Worldwide, over 20 million patients suffer from bone disorders annually. Bone scaffolds are designed to integrate into host tissue without causing adverse reactions. Recently, chitosan, an easily available natural polymer, has been considered a suitable scaffold for bone tissue growth as it is a biocompatible, biodegradable, and non-toxic material with antimicrobial activity and osteoinductive capacity. In this work, chitosan was covalently and selectively biofunctionalized with two suitably designed bioactive synthetic peptides: a Vitronectin sequence (HVP) and a BMP-2 peptide (GBMP1a). Nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) investigations highlighted the presence of the peptides grafted to chitosan (named Chit-HVP and Chit-GBMP1a). Chit-HVP and Chit-GBMP1a porous scaffolds promoted human osteoblasts adhesion, proliferation, calcium deposition, and gene expression of three crucial osteoblast proteins. In particular, Chit-HVP highly promoted adhesion and proliferation of osteoblasts, while Chit-GBMP1a guided cell differentiation towards osteoblastic phenotype.

7.
Small ; 17(41): e2103044, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34477325

RESUMO

On-surface Ullmann coupling is an established method for the synthesis of 1D and 2D organic structures. A key limitation to obtaining ordered polymers is the uncertainty in the final structure for coupling via random diffusion of reactants over the substrate, which leads to polymorphism and defects. Here, a topotactic polymerization on Cu(110) in a series of differently-halogenated para-phenylenes is identified, where the self-assembled organometallic (OM) reactants of diiodobenzene couple directly into a single, deterministic product, whereas the other precursors follow a diffusion driven reaction. The topotactic mechanism is the result of the structure of the iodine on Cu(110), which controls the orientation of the OM reactants and intermediates to be the same as the final polymer chains. Temperature-programmed X-ray photoelectron spectroscopy and kinetic modeling reflect the differences in the polymerization regimes, and the effects of the OM chain alignments and halogens are disentangled by Nudged Elastic Band calculations. It is found that the repulsion or attraction between chains and halogens drive the polymerization to be either diffusive or topotactic. These results provide detailed insights into on-surface reaction mechanisms and prove the possibility of harnessing topotactic reactions in surface-confined Ullmann polymerization.

8.
Small ; 16(35): e2002393, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32761784

RESUMO

While surface-confined Ullmann-type coupling has been widely investigated for its potential to produce π-conjugated polymers with unique properties, the pathway of this reaction in the presence of adsorbed oxygen has yet to be explored. Here, the effect of oxygen adsorption between different steps of the polymerization reaction is studied, revealing an unexpected transformation of the 1D organometallic (OM) chains to 2D OM networks by annealing, rather than the 1D polymer obtained on pristine surfaces. Characterization by scanning tunneling microscopy and X-ray photoelectron spectroscopy indicates that the networks consist of OM segments stabilized by chemisorbed oxygen at the vertices of the segments, as supported by density functional theory calculations. Hexagonal 2D OM networks with different sizes on Cu(111) can be created using precursors with different length, either 4,4″-dibromo-p-terphenyl or 1,4-dibromobenzene (dBB), and square networks are obtained from dBB on Cu(100). The control over size and symmetry illustrates a versatile surface patterning technique, with potential applications in confined reactions and host-guest chemistry.

9.
Nanoscale ; 11(16): 7682-7689, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30946426

RESUMO

Ullmann coupling or, more generally, dehalogenative aryl-aryl coupling, is one of the most widely exploited chemical reactions to obtain one- and two-dimensional polymers on metal surfaces. It is generally described as a two-step reaction: (i) dehalogenation, resulting in the formation of a stable intermediate organometallic phase and subsequent (ii) C-C coupling. The topology of the resulting polymer depends on the number and positions of the halogen atoms in the haloaromatic precursor, although its orientation and order are determined by the structure of the intermediate phase. Hitherto, only one intermediate structure, identified as an organometallic (OM) phase, has been reported for such a reaction. Here we demonstrate the formation of two distinct OM phases during the temperature-induced growth of poly(para-phenylene) from 1,4-dibromobenzene precursors on Cu(110). Beyond the already known linear-OM chains, we show that a phase reorganization to a chessboard-like 2D-OM can be activated in a well-defined temperature range. This new intermediate phase, revealed only when the reaction is carried out at low molecular coverages, was characterized by X-ray photoelectron spectroscopy, scanning tunneling microscopy and near-edge X-ray absorption fine structure spectroscopy, and modeled by density functional theory calculations. Our data show that the 2D-OM remains stable after cooling down the sample and is stabilized by four-Cu clusters at each node. The observation of such unexpected intermediate phase shows the complexity of the mechanisms underlying on-surface synthesis and broadens the understanding of Ullmann coupling, which continues to be astonishing despite its extensive use.

10.
J Phys Condens Matter ; 30(9): 093001, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29345628

RESUMO

Surface-confined polymerization is a bottom-up strategy to create one- and two-dimensional covalent organic nanostructures with a π-conjugated backbone, which are suitable to be employed in real-life electronic devices, due to their high mechanical resistance and electronic charge transport efficiency. This strategy makes it possible to change the properties of the final nanostructures by a careful choice of the monomer architecture (i.e. of its constituent atoms and their spatial arrangement). Several chemical reactions have been proven to form low-dimensional polymers on surfaces, exploiting a variety of precursors in combination with metal (e.g. Cu, Ag, Au) and insulating (e.g. NaCl, CaCO3) surfaces. One of the main challenges of such an approach is to obtain nanostructures with long-range order, to boost the conductance performances of these materials. Most of the exploited chemical reactions use irreversible coupling between the monomers and, as a consequence, the resulting structures often suffer from poor order and high defect density. This review focuses on the state-of-the-art surface-confined polymerization reactions, with particular attention paid to reversible coupling pathways and irreversible processes including intermediate states, which are key aspects to control to increase the order of the final nanostructure.

11.
Faraday Discuss ; 204: 453-469, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28770938

RESUMO

Ullmann coupling is the most common approach to form surface-confined one- and two-dimensional conjugated structures from haloaryl derivatives. The dimensions of the formed nanostructures can be controlled by the number and location of halogens within the molecular precursors. Our study illustrates that the type of halogen plays an essential role in the design, orientation, and extent of the surface-confined organometallic and polymeric nanostructures. We performed a comparative analysis of five 1,4-dihalobenzene molecules containing chlorine, bromine, and iodine on Cu(110) using scanning tunneling microscopy, fast-X-ray photoelectron and near edge X-ray absorption fine structure spectroscopies. Our experimental data identify different molecular structures, reaction temperatures and kinetics depending on the halogen type. Climbing image nudged elastic band simulations further clarify these observations by providing distinct diffusion paths for each halogen species. We show that in addition to the structure of the building blocks, the halogen type has a direct influence on the morphology of surface-confined polymeric structures based on Ullmann coupling.

12.
J Am Chem Soc ; 138(51): 16696-16702, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27958750

RESUMO

Surface-confined polymerization via Ullmann coupling is a promising route to create one- and two-dimensional covalent π-conjugated structures, including the bottom-up growth of graphene nanoribbons. Understanding the mechanism of the Ullmann reaction is necessary to provide a platform for rationally controlling the formation of these materials. We use fast X-ray photoelectron spectroscopy (XPS) in kinetic measurements of epitaxial surface polymerization of 1,4-dibromobenzene on Cu(110) and devise a kinetic model based on mean field rate equations, involving a transient state. This state is observed in the energy landscapes calculated by nudged elastic band (NEB) within density functional theory (DFT), which assumes as initial and final geometries of the organometallic and polymeric structures those observed by scanning tunneling microscopy (STM). The kinetic model accounts for all the salient features observed in the experimental curves extracted from the fast-XPS measurements and enables an enhanced understanding of the polymerization process, which is found to follow a nucleation-and-growth behavior preceded by the formation of a transient state.

13.
Nat Commun ; 7: 10235, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26725974

RESUMO

On-surface covalent self-assembly of organic molecules is a very promising bottom-up approach for producing atomically controlled nanostructures. Due to their highly tuneable properties, these structures may be used as building blocks in electronic carbon-based molecular devices. Following this idea, here we report on the electronic structure of an ordered array of poly(para-phenylene) nanowires produced by surface-catalysed dehalogenative reaction. By scanning tunnelling spectroscopy we follow the quantization of unoccupied molecular states as a function of oligomer length, with Fermi level crossing observed for long chains. Angle-resolved photoelectron spectroscopy reveals a quasi-1D valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the band structure, including the gap size and charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour.

15.
ACS Nano ; 7(9): 8190-8, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23987501

RESUMO

We provide insight into surface-catalyzed dehalogenative polymerization, analyzing the organometallic intermediate and its evolution into planar polymeric structures. A combined study using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and first-principles calculations unveils the structural conformation of substrate-bound phenylene intermediates generated from 1,4-dibromobenzene precursors on Cu(110), showing the stabilizing role of the halogen. The appearance of covalently bonded conjugated structures is followed in real time by fast-XPS measurements (with an acquisition time of 2 s per spectrum and heating rate of 2 K/s), showing that the detaching of phenylene units from the copper substrate and subsequent polymerization occur upon annealing above 460 ± 10 K.

16.
Chemphyschem ; 14(8): 1723-32, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23576447

RESUMO

A study of (R)-3-methylcyclopentanone [(R)-3-MCP] by photoelectron spectroscopy and photoelectron circular dichroism (PECD) is presented. The synchrotron radiation gas-phase photoelectron spectra of (R)-3-MCP were measured and are discussed on the basis of different theoretical methodologies. The experimental dichroism of (R)-3-MCP for selected deconvoluted valence states and for the carbonyl carbon 1s core state are reported and reproduced well by calculated dispersions generated by considering the contributions of two different conformers. The theoretical dichroic parameters are calculated by employing a multicentre basis set of B-spline functions and a Kohn-Sham Hamiltonian. Temperature-dependent PECD studies of the HOMO state and the carbonyl carbon 1s core level allowed the separation of the contributions of each conformer by photoelectron dichroism. This new approach clearly shows how the PECD methodology is sensitive to conformational and structural changes of unoriented (R)-3-MCP in the gas phase, opening up new perspectives in the characterisation of chiral molecular systems.


Assuntos
Ciclopentanos/química , Dicroísmo Circular , Conformação Molecular , Espectroscopia Fotoeletrônica , Teoria Quântica , Estereoisomerismo , Temperatura
17.
Chemphyschem ; 10(11): 1839-46, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19479894

RESUMO

A photoelectron circular dichroism (CD) study of the valence states of 2-amino-1-propanol (alaninol) in the gas phase is presented. The aim of the investigation is to reveal conformer population effects in the valence-state photoelectron spectrum. The experimental dispersion of the dichroic D parameter of valence states as a function of the photon excitation energy is compared with its theoretical value calculated by employing a multicentric basis set of B-spline functions and a Kohn-Sham Hamiltonian. The theoretical values are in very good agreement with the experimental data when the conformer population distribution is taken into account. Moreover, thanks to a comparison between experiment and theory, a clear assignment of the molecular orbital character and conformer geometry is given to the features of the photoelectron spectrum. This work indicates in a detailed experimental analysis that CD in photoelectron spectroscopy is an effective technique to disentangle the conformer assignment in photoelectron spectra.

18.
J Phys Chem B ; 112(13): 3963-70, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18327933

RESUMO

The adsorption of a single molecule of the D-enantiomer of alaninol (2-amino-1-propanol) on the surface of Cu(100) is investigated through density functional theory calculations. Different possible adsorption sites for D-alaninol are tested, and it is found that the most stable configuration presents both amino and hydroxyl group covalently interacting with "on top" copper atoms. The electronic structure is analyzed in detail and compared with experimental photoelectron spectra. Another adsorption structure in which a dehydrogenation process is assumed to occur on the amino group is analyzed and provides a possible explanation of the valence band electronic structure and of the experimentally observed N 1s core-level shift at full coverage, where a self-assembled ordered chiral monolayer is formed on the copper surface.


Assuntos
Simulação por Computador , Cobre/química , Modelos Químicos , Propanolaminas/química , Adsorção , Análise Espectral/métodos , Estereoisomerismo , Propriedades de Superfície
19.
J Phys Chem B ; 111(26): 7478-80, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17555348

RESUMO

We report the results of chemisorption in saturating conditions of D-alaninol on Cu(100) in term of the analysis of low-energy electron diffraction and scanning tunneling microscopy data. A large two-dimensional, single domain, ordered chiral structure of quadrangular tetrameric molecular units is formed. The four molecules interact differently with the surface in the two orthogonal directions.

20.
Chemphyschem ; 6(6): 1164-8, 2005 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-15945047

RESUMO

Circular dichroism in the angular distribution of valence photoelectrons emitted from randomly oriented 3-hydroxytetrahydrofuran enantiomers (ThS and ThR) has been observed in gas-phase experiments using circularly polarized vacuum ultraviolet (VUV) light. The measured dichroism for both ThS and ThR, acquired at the single magic angle theta=234.73 degrees and at photon energies of 22, 19, 16, and 14 eV, points to an asymmetric forward-backward scattering of the photoelectrons from their highest occupied molecular orbitals (HOMO) HOMO-1 and HOMO-2, of up to 5%, depending on the photon energy. The asymmetry reverses on exchange of either the helicity of the radiation or the configuration of Th. The photoionization dichroic D parameters of ThS and ThR have been measured and their values discussed in the light of LCAO B-spline density functional theory (DFT) predictions. While an acceptable agreement is found between the dichroic parameter measured and calculated at the highest photon energy for the HOMO and HOMO-2 orbitals of Th, a significant discrepancy is observed for the HOMO-1 state which is attributed to the floppiness of Th, in particular to the comparatively large sensitivity of the size and shape of its HOMO-1 on nuclear vibrational motion.


Assuntos
Furanos/química , Dicroísmo Circular , Elétrons , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA