Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Zool A Ecol Integr Physiol ; 333(5): 333-340, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32306529

RESUMO

Aquatic animals often display physiological adjustments to improve their biological performance and hydrosaline balance in saline environments. In addition to energetic costs associated with osmoregulation, oxidative stress, and the activation of the antioxidant system are common cellular responses to salt stress in many species, but the knowledge of osmoregulation-linked oxidative homeostasis in amphibians is scarce. Here we studied the biochemical responses and oxidative responses of Xenopus laevis females exposed for 40 days to two contrasting salinities: hypo-osmotic (150 mOsm·kg-1 ·H2 O NaCl, HYPO group) and hyper-osmotic environments (340 mOsm·kg-1 ·H2 O NaCl, HYPER group). We found an increase of plasma osmolality and plasma urea concentration in the animals incubated in the HYPER treatment. Increases in electrolyte concentration were paralleled with an increase of both citrate synthase and cytochrome c oxidase activities in liver and heart. Interestingly, HYPO group had higher catabolic activity of the skin and liver total antioxidant capacity (TAC), compared with animals from the HYPER group. Moreover, there was an inverse relationship between liver TAC and plasma osmolality; and with the metabolic enzymes from liver. These findings suggest that salinity induces changes in urea metabolism and specific activity of metabolic enzymes, which appears to be tissue-dependent in X. laevis. Contrary to our expectations, we also found a moderate change in the oxidative status as revealed by the increase in TAC activity in the animals acclimated to low salinity medium, but constancy in the lipid peroxidation of membranes.


Assuntos
Espécies Introduzidas , Osmorregulação/fisiologia , Estresse Oxidativo/fisiologia , Salinidade , Xenopus laevis , Aclimatação , Animais , Peso Corporal , Feminino
2.
Artigo em Inglês | MEDLINE | ID: mdl-31022522

RESUMO

Physiological traits associated with maintenance, growth, and reproduction demand a large amount of energy and thus directly influence an animal's energy budget, which is also regulated by environmental conditions. In this study, we evaluated the interplay between ambient temperature and salinity of drinking water on energy budgets and physiological responses in adult Rufous-collared sparrow (Zonotrichia capensis), an omnivorous passerine that is ubiquitous in Chile and inhabits a wide range of environments. We acclimated birds to 30 days at two ambient temperatures (27 °C and 17 °C) and drinking water salinity (200 mM NaCl and fresh water) conditions. We evaluated: 1) the aerobic scope and the activities of mitochondrial metabolic enzymes, 2) osmoregulatory parameters, 3) the skin-swelling immune response to an antigen, 4) oxidative status, and 5) the length of telomeres of red blood cells. Our results confirm that Z. capensis tolerates the chronic consumption of moderate levels of salt, maintaining body mass but increasing their basal metabolic rates consistent with expected osmoregulatory costs. Additionally, the factorial aerobic scope was higher in birds acclimated to fresh (tap) water at both 17° and 27 °C. Drinking water salinity and low ambient temperatures negatively impacted inflammatory response, and we observed an increase in lipid peroxidation and high levels of circulating antioxidants at low temperatures. Finally, telomere length was not affected by osmo- and thermoregulatory stress. Our results did not support the existence of an interplay between environmental temperature and drinking water salinity on most physiological and biochemical traits in Z. capensis, but the negative effect of these two factors on the inflammatory immune response suggests the existence of an energetic trade-off between biological functions that act in parallel to control immune function.


Assuntos
Imunidade Inata/fisiologia , Estresse Oxidativo/fisiologia , Sais/metabolismo , Pardais/fisiologia , Aclimatação/fisiologia , Animais , Metabolismo Basal , Comportamento Alimentar/fisiologia , Reprodução/fisiologia , Salinidade , Cloreto de Sódio na Dieta/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA