Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 86(1): 261-270, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36048179

RESUMO

While it is now well established that fungal community composition varies spatially at a variety of scales, temporal turnover of fungi is less well understood. Here we studied inter-annual community compositional changes of fungi in a rainforest tree canopy environment. We tracked fungal community shifts over 3 years in three substrate types (live bryophytes, dead bryophytes, and host tree bark) and compared these changes to amounts of community turnover seen at small spatial scales in the same system. The effect of substrate type on fungal community composition was stronger than that of sampling year, which was very small but significant. Although levels of temporal turnover varied among substrates, with greater turnover in live bryophytes than other substrates, the amount of turnover from year to year was comparable to what is seen at spatial distances between 5 and 9 cm for the same substrate. Stability of communities was largely driven by a few fungi with high relative abundances. A majority of fungal occurrences were at low relative abundances (≤ 0.1%). These fungi tended to be short lived and persisted to following years ≤ 50% of the time, depending on substrate. Their presence and persistence are likely impacted by stochastic processes like dispersal limitation and disturbance. Most samples contained only one or a few fungi at high relative abundance (≥ 10%) that persisted half or more of the time. These more abundant and persistent fungi are expected to have sustained functional interactions within the canopy ecosystem.


Assuntos
Ecossistema , Micobioma , Fungos , Árvores/microbiologia , Floresta Úmida , Microbiologia do Solo , Biodiversidade
2.
Mol Ecol ; 31(6): 1879-1891, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060231

RESUMO

Fungal species have numerous important environmental functions. Where these functions occur will depend on how fungi are spatially distributed, but the spatial structures of fungal communities are largely unknown, especially in understudied hyperdiverse tropical tree canopy systems. Here we explore fungal communities in a Costa Rican tropical rainforest canopy, with a focus on local-scale spatial structure and substrate specificity of fungi. Samples of ~1 cm3 were collected from 135 points along five adjacent tree branches, with intersample distances from 1 to 800 cm, and dissected into four substrates: outer host tree bark, inner bark, dead bryophytes and living bryophytes. We sequenced the ITS2 region to characterize total fungal communities. Fungal community composition and diversity varied among substrate types, even when multiple substrates were in direct contact. Fungi were most diverse in living bryophytes, with 39% of all operational taxonomic units (OTUs) found exclusively in this substrate, and the least diverse in inner bark. Fungal communities had significant positive spatial autocorrelation and distance decay of similarity only at distances less than 1 m. Similarity among samples declined by half in less than 10 cm, and even at these short distances, similarities were low with few OTUs shared among samples. These results indicate that community turnover is high and occurs at very small spatial scales, with any two locations sharing very few fungi in common. High heterogeneity of fungal communities in space and among substrates may have implications for the distributions, population dynamics and diversity of other tree canopy organisms, including epiphytic plants.


Assuntos
Micobioma , Biodiversidade , Fungos/genética , Micobioma/genética , Plantas/microbiologia , Floresta Úmida , Árvores
3.
Front Fungal Biol ; 3: 996574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746221

RESUMO

Human lung mycobiome studies typically sample bronchoalveolar lavage or sputum, potentially overlooking fungi embedded in tissues. Employing ultra-frozen lung tissues from biorepositories, we obtained fungal ribosomal RNA ITS2 sequences from 199 small mammals across 39 species. We documented diverse fungi, including common environmental fungi such as Penicillium and Aspergillus, associates of the human mycobiome such as Malassezia and Candida, and others specifically adapted for lungs (Coccidioides, Blastomyces, and Pneumocystis). Pneumocystis sequences were detected in 83% of the samples and generally exhibited phylogenetic congruence with hosts. Among sequences from diverse opportunistic pathogens in the Onygenales, species of Coccidioides occurred in 12% of samples and species of Blastomyces in 85% of samples. Coccidioides sequences occurred in 14 mammalian species. The presence of neither Coccidioides nor Aspergillus fumigatus correlated with substantial shifts in the overall mycobiome, although there was some indication that fungal communities might be influenced by high levels of A. fumigatus. Although members of the Onygenales were common in lung samples (92%), they are not common in environmental surveys. Our results indicate that Pneumocystis and certain Onygenales are common commensal members of the lung mycobiome. These results provide new insights into the biology of lung-inhabiting fungi and flag small mammals as potential reservoirs for emerging fungal pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA