Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 863: 160846, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36526197

RESUMO

Packaging is essential to protect food, inform consumers, and avoid food waste, yet it can also contribute to the environmental footprint of products. Recycling waste treatment potentially provides more environmental benefits than other options (e.g., landfill), but only 66 % of packaging waste goes to recycling in the European Union. However, the prevention of packaging production with greater reuse, while extending the lifetime or improving packaging design should be firstly encouraged. This highlights the need to assess the willingness of consumers in reducing the environmental impact of seafood products from packaging. An online questionnaire was conducted in three countries (Portugal, Spain, and Ireland), composed of four sections: (i) seafood consumption, (ii) waste separation to be sent recycling, (iii) willingness to purchase seafood products with packaging designed to reduce environmental impact, and (iv) sociodemographic characteristics. Findings revealed that respondents from Spain and Portugal reported a slightly higher frequency of waste sent to recycle compared to Ireland. Irish respondents appear to have more difficulties about the type of plastic materials that can be sent to recycling due to Irish waste management capabilities; whereas Spanish and Portuguese respondents were not fully aware that packaging does not need to be washed prior to recycling. The most popular alternatives to improve the sustainability of seafood packaging were the use of reusable packaging, compostable packaging material, glass jars for canned seafood instead of cans, and intelligent packaging. Most respondents were willing to pay more for seafood products that use more sustainable packaging (62 % for Spain, 68 % for Ireland, 70 % for Portugal) and half of the respondents intimated that they avoid seafood products due to excessive packaging. With more detailed information on the waste management of packaging, seafood consumers could actively contribute with their attitudes where commensurate changes can improve environmental assessment of seafood.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Embalagem de Produtos , Conservação dos Recursos Naturais , Reciclagem , Plásticos , Alimentos Marinhos
2.
Sci Total Environ ; 852: 158523, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063924

RESUMO

China's reliance on aquaculture has intensified to satisfy the growing human demand for high-quality animal protein, making it the only country whose aquaculture production has greatly exceeded that of capture fishery for a long time. Previous studies have shown that phosphorus (P) is a limiting nutrient for freshwater eutrophication; therefore, the quantification of P flows in freshwater aquaculture is of great importance for improving aquaculture efficiency and reducing environmental pollution. In this study, life cycle assessment (LCA) and substance flow analysis (SFA) are combined to develop a life cycle P flow model for Chinese mitten crab (Eriocheir sinensis) culture and calculate the P inputs, outputs and net change in stock. The results show a relatively low P use efficiency (4 %) in Chinese mitten crab. Among all life-cycle stages, the maximum P input occurs during adult crab cultivation, when feed is continuously added to maintain appropriate nutrition levels and increase body weight. In addition, fertilizer is often neglected in the existing accounts but accounts for 24 % of the total P inputs. On the output side, approximately 86 % of the P accumulates in sediment, indicating the potential of sediment recycling as a nutrient source in agriculture. This study provides an updated quantitative method for describing nutrient flows within freshwater aquaculture systems and will contribute to decision-making in pollution control of intensive freshwater aquaculture activities.


Assuntos
Braquiúros , Fósforo , Humanos , Animais , Fertilizantes , Aquicultura , Eutrofização , China
3.
Sci Total Environ ; 761: 144094, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33360652

RESUMO

Life cycle assessment (LCA) has been widely applied in many different sectors, but the marine products and seafood segment have received relatively little attention in the past. In recent decades, global fish production experienced sustained growth and peaked at about 179 million tonnes in 2018. Consequently, increased interest in the environmental implications of fishery products along the supply chain, namely from capture to end of life, was recently experienced by society, industry and policy-makers. This timely review aims to describe the current framework of LCA and its application to the seafood sector that mainly focused on fish extraction and processing, but it also encompassed the remaining stages. An excess of 60 studies conducted over the last decade, along with some additional publications, were comprehensively reviewed; these focused on the main LCA methodological choices, including but not limited to, functional unit, system boundaries allocation methods and environmental indicators. The review identifies key recommendations on the progression of LCA for this increasingly important sustaining seafood sector. Specifically, these recommendations include (i) the need for specific indicators for fish-related activities, (ii) the target species and their geographical origin, (iii) knowledge and technology transfer and, (iv) the application and implementation of key recommendations from LCA research that will improve the accuracy of LCA models in this sector. Furthermore, the review comprises a section addressing previous and current challenges of the seafood sector. Wastewater treatment, ghost fishing or climate change, are also the objects of discussion together with advocating support for the water-energy-food nexus as a valuable tool to minimize environmental negativities and to frame successful synergies.


Assuntos
Mudança Climática , Alimentos Marinhos , Animais , Estágios do Ciclo de Vida
4.
Mol Ther ; 16(10): 1674-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18714308

RESUMO

Drug-eluting stents for coronary artery disease results in inhibition of smooth muscle cell (SMC) and endothelial cells which may increase the risk of stent thrombosis. In this study, we attempted to enhance re-endothelialization of deployed stents while simultaneously inhibiting intimal hyperplasia by overexpression of endothelial nitric oxide synthase (eNOS) delivery in the vasculature using an adenovirus gene-eluting stent. Re-endothelialization was significantly greater in vessels obtained from normocholesterolemic animals at day 14 (85.34% +/- 7.38 versus 62.66% +/- 10.49; P < 0.05) and day 28 (91.1% +/- 10 versus 63.1% +/- 22; P < 0.05) and hypercholesterolemic animals (96.97% +/- 3.2 versus 28.33% +/- 38.76; P < 0.05) at day 28 with AdeNOS-eluting stents. At day 28, there was a significant increase in the lumen size [AdeNOS 2.73 mm(2) +/- 1.18, AdbetaGal 0.98 mm(2) +/- 0.98, phosphorylcholine (PC) 1.87 mm(2) +/- 1.18; P < 0.05], and a significant reduction in neointimal formation (AdeNOS 2.32 mm(2) +/- 1.13, AdbetaGal 3.73 mm(2) +/- 0.95, PC 3.2 mm(2) +/- 0.94; P < 0.05), and percent restenosis (AdeNOS 45.23 +/- 20.81, AdbetaGal 79.6 +/- 20.31, PC 70.16 +/- 22.2; P < 0.05) in AdeNOS-stented vessels in comparison with controls from hypercholesterolemic animals, assessed by morphometry and quantitative coronary angiography (AdeNOS 15.95% +/- 7.63, AdbetaGal 56.9% +/- 38.6, PC 58 +/- 34.6; P < 0.05). Stent-based delivery of AdeNOS results in enhanced endothelial regeneration and reduction in neointimal formation as compared with controls. This seems to be a promising treatment strategy for preventing in-stent restenosis (ISR) while simultaneously reducing the risk of stent thrombosis.


Assuntos
Adenoviridae/genética , Reestenose Coronária/prevenção & controle , Vetores Genéticos , Óxido Nítrico Sintase Tipo III/genética , Stents , Túnica Íntima/enzimologia , Animais , Hipercolesterolemia/patologia , Coelhos , Túnica Íntima/patologia
5.
J Vasc Res ; 43(5): 462-72, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16921253

RESUMO

OBJECTIVE: Many vascular diseases are associated with reduced nitric oxide (NO) bioavailability. Nitric oxide synthase (NOS) gene therapy to the vasculature is a possible treatment for vascular disease as a means of increasing NO bioavailability, and this may be achieved using any of the NOS isoforms. The aim of our study was to compare the effects of adenoviral-mediated overexpression of the most commonly used NOS isoforms eNOS and iNOS on vascular cell proliferation. METHODS: Human coronary artery smooth muscle cells (HCSMCs) and human umbilical vein endothelial cells (HUVECs) were transduced with adenoviral vectors encoding eNOS or iNOS at a multiplicity of infection of 100. Control cells were exposed to AdNull (empty vector) or diluent alone. Transgene expression was sought by Western blotting. The Greiss assay was used to measure nitrite levels. Cell proliferation was assessed by cell counting on days 0, 3 and 6. Apoptosis was sought using FACS analysis. Angiogenesis was measured using a commercially available in vitro kit. RESULTS: Expression of both isoforms was detected in transduced cells by Western blot at all three time points. NOS transduction resulted in increased nitrite levels with higher levels seen in iNOS- compared to eNOS-transduced cells. Cell proliferation was diminished in AdeNOS- and AdiNOS-transduced cells compared with non-transduced cells on days 3 and 6 in both HCSMCs and HUVECs. Apoptosis was not detected in either cell line with either of the isoforms at any timepoint studied. Both eNOS and iNOS gene transfer caused a reduction in angiogenesis. CONCLUSIONS: NOS gene transfer to both endothelial and vascular smooth muscle cells is antiproliferative and antiangiogenic. The biological effect is identical with both isoforms and there is no evidence to support a differential effect on endothelial and vascular smooth muscle cell biology.


Assuntos
Adenoviridae/genética , Vasos Coronários/fisiologia , Músculo Liso Vascular/fisiologia , Óxido Nítrico Sintase Tipo III/genética , Inibidores da Angiogênese , Animais , Bovinos , Técnicas de Cultura de Células , Divisão Celular , Clonagem de Organismos , Vasos Coronários/citologia , Citomegalovirus , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Músculo Liso Vascular/citologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Regiões Promotoras Genéticas
6.
Hum Gene Ther ; 17(7): 741-50, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16839273

RESUMO

Gene-eluting stents are being evaluated in animals as an alternative approach to inhibiting in-stent restenosis. Adeno-associated virus type 2 (AAV2) and adenovirus are commonly used for gene transfer applications. We tested the hypothesis that these vectors can achieve prolonged and localized gene delivery to the vessel wall, using stents as delivery platforms. AdbetaGal (5 x 10(9) plaque-forming units) and AAV2betaGal (5.3 x 10(9) DNase-resistant particles) were used to coat BiodivYsio stents with matrix HI coating (Abbott Vascular Devices, Galway, Ireland). After balloon injury, external iliac arteries of New Zealand White rabbits were stented. The reverse transcription-polymerase chain reaction was used to assess viral spread. Expression of LacZ was demonstrated with both vectors at five time points (3, 7, 14, 21, and 28 days). In the adenovirus group the median percentage of cells expressing the transgene on day 3 was 2.73%, which increased to a median expression of 7.31% at 28 days (p > 0.05). Expression was localized to medial cells on day 3, but was observed predominantly in neointimal cells on day 28. In the AAV group, day 3 expression was 5.78%, which decreased to 2.12% on day 28 (p = 0.05). No systemic dissemination of virus was seen in any group. Adenovirus- and AAV2-coated stents can be used to deliver genes to the blood vessel wall for up to 28 days.


Assuntos
Adenoviridae/genética , Vasos Sanguíneos/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Stents , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/enzimologia , Expressão Gênica , Vetores Genéticos/genética , Coelhos , Transgenes , beta-Galactosidase/análise , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA