Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 38(3-4): 131-150, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38453481

RESUMO

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Assuntos
Oócitos , Zigoto , Animais , Criança , Feminino , Humanos , Camundongos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Citoplasma/genética , Citoplasma/metabolismo , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Impressão Genômica/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
BMC Cancer ; 23(1): 138, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765275

RESUMO

BACKGROUND: Rearranged during transfection (RET) tyrosine kinase signaling has been previously implicated in endocrine resistant breast cancer, however the mechanism by which this signaling cascade promotes resistance is currently not well described. We recently reported that glial cell-derived neurotrophic factor (GDNF)-RET signaling appears to promote a positive feedback loop with the transcription factor early growth response 1 (EGR1). Here we investigate the mechanism behind this feedback loop and test the hypothesis that GDNF-RET signaling forms a regulatory loop with EGR1 to upregulate cyclin D1 (CCND1) transcription, leading to cell cycle progression and tamoxifen resistance. METHODS: To gain a better understanding of the GDNF-RET-EGR1 resistance mechanism, we studied the GDNF-EGR1 positive feedback loop and the role of GDNF and EGR1 in endocrine resistance by modulating their transcription levels using CRISPR-dCAS9 in tamoxifen sensitive (TamS) and tamoxifen resistant (TamR) MCF-7 cells. Additionally, we performed kinetic studies using recombinant GDNF (rGDNF) treatment of TamS cells. Finally, we performed cell proliferation assays using rGDNF, tamoxifen (TAM), and Palbociclib treatments in TamS cells. Statistical significance for qPCR and chromatin immunoprecipitation (ChIP)-qPCR experiments were determined using a student's paired t-test and statistical significance for the cell viability assay was a one-way ANOVA. RESULTS: GDNF-RET signaling formed a positive feedback loop with EGR1 and also downregulated estrogen receptor 1 (ESR1) transcription. Upregulation of GDNF and EGR1 promoted tamoxifen resistance in TamS cells and downregulation of GDNF promoted tamoxifen sensitivity in TamR cells. Additionally, we show that rGDNF treatment activated GDNF-RET signaling in TamS cells, leading to recruitment of phospho-ELK-1 to the EGR1 promoter, upregulation of EGR1 mRNA and protein, binding of EGR1 to the GDNF and CCND1 promoters, increased GDNF protein expression, and subsequent upregulation of CCND1 mRNA levels. We also show that inhibition of cyclin D1 with Palbociclib, in the presence of rGDNF, decreases cell proliferation and resensitizes cells to TAM. CONCLUSION: Outcomes from these studies support the hypotheses that GDNF-RET signaling forms a positive feedback loop with the transcription factor EGR1, and that GDNF-RET-EGR1 signaling promotes endocrine resistance via signaling to cyclin D1. Inhibition of components of this signaling pathway could lead to therapeutic insights into the treatment of endocrine resistant breast cancer.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Tamoxifeno , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Retroalimentação , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Cinética , RNA Mensageiro , Transdução de Sinais , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Fatores de Transcrição , Humanos
3.
Reprod Biol Endocrinol ; 20(1): 150, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224627

RESUMO

BACKGROUND: Peptidylarginine deiminase enzymes (PADs) convert arginine residues to citrulline in a process called citrullination or deimination. Recently, two PADs, PAD2 and PAD4, have been linked to hormone signaling in vitro and the goal of this study was to test for links between PAD2/PAD4 and hormone signaling in vivo. METHODS: Preliminary analysis of Padi2 and Padi4 single knockout (SKO) mice did not find any overt reproductive defects and we predicted that this was likely due to genetic compensation. To test this hypothesis, we created a Padi2/Padi4 double knockout (DKO) mouse model and tested these mice along with wild-type FVB/NJ (WT) and both strains of SKO mice for a range of reproductive defects. RESULTS: Controlled breeding trials found that male DKO mice appeared to take longer to have their first litter than WT controls. This tendency was maintained when these mice were mated to either DKO or WT females. Additionally, unsexed 2-day old DKO pups and male DKO weanlings both weighed significantly less than their WT counterparts, took significantly longer than WT males to reach puberty, and had consistently lower serum testosterone levels. Furthermore, 90-day old adult DKO males had smaller testes than WT males with increased rates of germ cell apoptosis. CONCLUSIONS: The Padi2/Padi4 DKO mouse model provides a new tool for investigating PAD function and outcomes from our studies provide the first in vivo evidence linking PADs with hormone signaling.


Assuntos
Citrulina , Infertilidade , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Animais , Arginina , Modelos Animais de Doenças , Feminino , Gonadotropinas , Hidrolases/genética , Infertilidade/genética , Masculino , Camundongos , Camundongos Knockout , Proteína-Arginina Desiminase do Tipo 2/genética , Desiminases de Arginina em Proteínas/genética , Testosterona
4.
Sci Transl Med ; 13(585)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731433

RESUMO

The mechanisms by which environmental exposures contribute to the pathogenesis of lung fibrosis are unclear. Here, we demonstrate an increase in cadmium (Cd) and carbon black (CB), common components of cigarette smoke (CS) and environmental particulate matter (PM), in lung tissue from subjects with idiopathic pulmonary fibrosis (IPF). Cd concentrations were directly proportional to citrullinated vimentin (Cit-Vim) amounts in lung tissue of subjects with IPF. Cit-Vim amounts were higher in subjects with IPF, especially smokers, which correlated with lung function and were associated with disease manifestations. Cd/CB induced the secretion of Cit-Vim in an Akt1- and peptidylarginine deiminase 2 (PAD2)-dependent manner. Cit-Vim mediated fibroblast invasion in a 3D ex vivo model of human pulmospheres that resulted in higher expression of CD26, collagen, and α-SMA. Cit-Vim activated NF-κB in a TLR4-dependent fashion and induced the production of active TGF-ß1, CTGF, and IL-8 along with higher surface expression of TLR4 in lung fibroblasts. To corroborate ex vivo findings, mice treated with Cit-Vim, but not Vim, independently developed a similar pattern of fibrotic tissue remodeling, which was TLR4 dependent. Moreover, wild-type mice, but not PAD2-/- and TLR4 mutant (MUT) mice, exposed to Cd/CB generated high amounts of Cit-Vim, in both plasma and bronchoalveolar lavage fluid, and developed lung fibrosis in a stereotypic manner. Together, these studies support a role for Cit-Vim as a damage-associated molecular pattern molecule (DAMP) that is generated by lung macrophages in response to environmental Cd/CB exposure. Furthermore, PAD2 might represent a promising target to attenuate Cd/CB-induced fibrosis.


Assuntos
Cádmio/toxicidade , Fibrose Pulmonar Idiopática , Fuligem/toxicidade , Vimentina , Animais , Células Cultivadas , Citrulinação , Fibroblastos , Pulmão , Masculino , Camundongos , Fumaça , Poluição por Fumaça de Tabaco , Fator de Crescimento Transformador beta1
5.
BMC Vet Res ; 16(1): 206, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571313

RESUMO

BACKGROUND: Canine visceral hemangiosarcoma (HSA) is a highly aggressive cancer of endothelial origin that closely resembles visceral angiosarcoma in humans, both clinically and histopathologically. Currently there is an unmet need for new diagnostics and therapies for both forms of this disease. The goal of this study was to utilize Chromatin run-on sequencing (ChRO-seq) and immunohistochemistry (IHC) to identify gene and protein expression signatures that may be important drivers of HSA progression. RESULTS: ChRO-seq was performed on tissue isolated from 17 HSA samples and 4 normal splenic samples. Computational analysis was then used to identify differentially expressed genes and these factors were subjected to gene ontology analysis. ChRO-seq analysis revealed over a thousand differentially expressed genes in HSA tissue compared with normal splenic tissue (FDR < 0.005). Interestingly, the majority of genes overexpressed in HSA tumor tissue were associated with extracellular matrix (ECM) remodeling. This observation correlated well with our histological analysis, which found that HSA tumors contain a rich and complex collagen network. Additionally, we characterized the protein expression patterns of two highly overexpressed molecules identified in ChRO-seq analysis, podoplanin (PDPN) and laminin alpha 4 (LAMA4). We found that the expression of these two ECM-associated factors appeared to be largely limited to transformed endothelial cells within the HSA lesions. CONCLUSION: Outcomes from this study suggest that ECM remodeling plays an important role in HSA progression. Additionally, our study identified two potential novel biomarkers of HSA, PDPN and LAMA4. Interestingly, given that function-blocking anti-PDPN antibodies have shown anti-tumor effects in mouse models of canine melanoma, our studies raise the possibility that these types of therapeutic strategies could potentially be developed for treating canine HSA.


Assuntos
Doenças do Cão/patologia , Matriz Extracelular/patologia , Hemangiossarcoma/veterinária , Neoplasias Esplênicas/veterinária , Animais , Biomarcadores Tumorais , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cães , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Hemangiossarcoma/genética , Hemangiossarcoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Baço/metabolismo , Neoplasias Esplênicas/genética , Neoplasias Esplênicas/metabolismo
6.
J Exp Clin Cancer Res ; 38(1): 414, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601253

RESUMO

BACKGROUND: Tamoxifen resistance presents a huge clinical challenge for breast cancer patients. An understanding of the mechanisms of tamoxifen resistance can guide development of efficient therapies to prevent drug resistance. METHODS: We first tested whether peptidylarginine deiminase 2 (PAD2) may be involved in tamoxifen-resistance in breast cancer cells. The effect of depleting or inhibiting PAD2 in tamoxifen-resistant MCF-7 (MCF7/TamR) cells was evaluated both in vitro and in vivo. We then investigated the potential of Cl-amidine, a PAD inhibitor, to be used in combination with tamoxifen or docetaxel, and further explored the mechanism of the synergistic and effective drug regimen of PADs inhibitor and docetaxel on tamoxifen-resistant breast cancer cells. RESULTS: We report that PAD2 is dramatically upregulated in tamoxifen-resistant breast cancer. Depletion of PAD2 in MCF7/TamR cells facilitated the sensitivity of MCF7/TamR cells to tamoxifen. Moreover, miRNA-125b-5p negatively regulated PAD2 expression in MCF7/TamR cells, therefore overexpression of miR-125b-5p also increased the cell sensitivity to tamoxifen. Furthermore, inhibiting PAD2 with Cl-amidine not only partially restored the sensitivity of MCF7/TamR cells to tamoxifen, but also more efficiently enhanced the efficacy of docetaxel on MCF7/TamR cells with lower doses of Cl-amidine and docetaxel both in vivo and in vivo. We then showed that combination treatment with Cl-amidine and docetaxel enhanced p53 nuclear accumulation, which synergistically induced cell cycle arrest and apoptosis. Meanwhile, p53 activation in the combination treatment also accelerated autophagy processes by synergistically decreasing the activation of Akt/mTOR signaling, thus enhancing the inhibition of proliferation. CONCLUSION: Our results suggest that PAD2 functions as an important new biomarker for tamoxifen-resistant breast cancers and that inhibiting PAD2 combined with docetaxel may offer a new approach to treatment of tamoxifen-resistant breast cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Docetaxel/farmacologia , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Tamoxifeno/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose , Autofagia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ornitina/análogos & derivados , Ornitina/farmacologia , Ornitina/uso terapêutico , Proteína-Arginina Desiminase do Tipo 2/genética , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Tamoxifeno/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biomaterials ; 217: 119307, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271857

RESUMO

The physical microenvironment of tumor cells plays an important role in cancer initiation and progression. Here, we present evidence that confinement - a new physical parameter that is apart from matrix stiffness - can also induce malignant transformation in mammary epithelial cells. We discovered that MCF10A cells, a benign mammary cell line that forms growth-arrested polarized acini in Matrigel, transforms into cancer-like cells within the same Matrigel material following confinement in alginate shell hydrogel microcapsules. The confined cells exhibited a range of tumor-like behaviors, including uncontrolled cellular proliferation and invasion. Additionally, 4-6 weeks after transplantation into the mammary fad pads of immunocompromised mice, the confined cells formed large palpable masses that exhibited histological features similar to that of carcinomas. Taken together, our findings suggest that physical confinement represents a previously unrecognized mechanism for malignancy induction in mammary epithelial cells and also provide a new, microcapsule-based, high throughput model system for testing new breast cancer therapeutics.


Assuntos
Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Glândulas Mamárias Humanas/patologia , Células Acinares/patologia , Animais , Cápsulas , Carcinogênese/patologia , Matriz Extracelular/metabolismo , Feminino , Humanos , Hidrogéis/química , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos SCID , Análise de Sequência de RNA , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Immunol ; 203(4): 795-800, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31292215

RESUMO

Protein arginine deiminase (PAD) enzymes catalyze the conversion of protein-bound arginine into citrulline, an irreversible posttranslational modification with loss of a positive charge that can influence protein-protein interactions and protein structure. Protein arginine deiminase activity depends on high intracellular calcium concentrations occurring in dying cells. In this study, we demonstrate that protein citrullination is common during pyroptotic cell death in macrophages and that inhibition of PAD enzyme activity by Cl-amidine, a pan-PAD inhibitor, blocks NLRP3 inflammasome assembly and proinflammatory IL-1ß release in macrophages. Genetic deficiency of either PAD2 or PAD4 alone in murine macrophages does not impair IL-1ß release; however, pharmacological inhibition or small interfering RNA knockdown of PAD2 within PAD4-/- macrophages does. Our results suggest that PAD2 and 4 activity in macrophages is required for optimal inflammasome assembly and IL-1ß release, a finding of importance for autoimmune diseases and inflammation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Animais , Citrulinação/fisiologia , Humanos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia
9.
Biochemistry ; 58(27): 3042-3056, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31243954

RESUMO

Protein arginine deiminases (PADs) are calcium-dependent enzymes that mediate the post-translational conversion of arginine into citrulline. Dysregulated PAD activity is associated with numerous autoimmune disorders and cancers. In breast cancer, PAD2 citrullinates histone H3R26 and activates the transcription of estrogen receptor target genes. However, PAD2 lacks a canonical nuclear localization sequence, and it is unclear how this enzyme is transported into the nucleus. Here, we show for the first time that PAD2 translocates into the nucleus in response to calcium signaling. Using BioID2, a proximity-dependent biotinylation method for identifying interacting proteins, we found that PAD2 preferentially associates with ANXA5 in the cytoplasm. Binding of calcium to PAD2 weakens this cytoplasmic interaction, which generates a pool of calcium-bound PAD2 that can interact with Ran. We hypothesize that this latter interaction promotes the translocation of PAD2 into the nucleus. These findings highlight a critical role for ANXA5 in regulating PAD2 and identify an unusual mechanism whereby proteins translocate between the cytosol and nucleus.


Assuntos
Cálcio/metabolismo , Núcleo Celular/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Transporte Ativo do Núcleo Celular , Sinalização do Cálcio , Células HEK293 , Humanos , Modelos Moleculares , Proteína-Arginina Desiminase do Tipo 2/análise
10.
JCI Insight ; 3(23)2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30518690

RESUMO

The peptidylarginine deiminases PAD2 and PAD4 are implicated in the pathogenesis of several autoimmune diseases. PAD4 may be pathogenic in systemic lupus erythematosus (SLE) through its role in neutrophil extracellular trap (NET) formation that promotes autoantigen externalization, immune dysregulation, and organ damage. The role of this enzyme in mouse models of autoimmunity remains unclear, as pan-PAD chemical inhibitors improve clinical phenotype, whereas PAD4-KO models have given conflicting results. The role of PAD2 in SLE has not been investigated. The differential roles of PAD2 and PAD4 in TLR-7-dependent lupus autoimmunity were examined. Padi4-/- displayed decreased autoantibodies, type I IFN responses, immune cell activation, vascular dysfunction, and NET immunogenicity. Padi2-/- mice showed abrogation of Th subset polarization, with some disease manifestations reduced compared with WT but to a lesser extent than Padi4-/- mice. RNA sequencing analysis revealed distinct modulation of immune-related pathways in PAD-KO lymphoid organs. Human T cells express both PADs and, when exposed to either PAD2 or PAD4 inhibitors, displayed abrogation of Th1 polarization. These results suggest that targeting PAD2 and/or PAD4 activity modulates dysregulated TLR-7-dependent immune responses in lupus through differential effects of innate and adaptive immunity. Compounds that target PADs may have potential therapeutic roles in T cell-mediated diseases.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Desiminases de Arginina em Proteínas/imunologia , Desiminases de Arginina em Proteínas/metabolismo , Receptor 7 Toll-Like/imunologia , Animais , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Armadilhas Extracelulares , Feminino , Regulação da Expressão Gênica , Histonas , Humanos , Hidrolases/genética , Hidrolases/imunologia , Hidrolases/metabolismo , Inflamação , Interferon Tipo I , Camundongos , Camundongos Knockout , Proteína-Arginina Desiminase do Tipo 2 , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th1 , Células Th17 , Transcriptoma
11.
PLoS One ; 13(4): e0194023, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29608602

RESUMO

The RET tyrosine kinase signaling pathway is involved in the development of endocrine resistant ER+ breast cancer. However, we know little about how ER+ cells activate RET signaling and initiate an endocrine resistant phenotype. Here we show that both ER+ endocrine resistant and sensitive breast cancers have a functional RET tyrosine kinase signaling pathway, but that endocrine sensitive breast cancer cells lack RET ligands that are necessary to drive endocrine resistance. Transcription of one RET ligand, GDNF, is necessary and sufficient to confer resistance in the ER+ MCF-7 cell line. Endogenous GDNF produced by endocrine resistant cells is translated, secreted into the media, and activates RET signaling in nearby cells. In patients, RET ligand expression predicts responsiveness to endocrine therapies and correlates with survival. Collectively, our findings show that ER+ tumor cells are "poised" for RET mediated endocrine resistance, expressing all components of the RET signaling pathway, but endocrine sensitive cells lack high expression of RET ligands that are necessary to initiate the resistance phenotype.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Mama/patologia , Proliferação de Células/genética , Feminino , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-ret/genética , Receptores de Estrogênio/genética
12.
BMC Cancer ; 18(1): 412, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649984

RESUMO

BACKGROUND: Mammary cancer is highly prevalent in dogs and cats and results in a poor prognosis due to critically lacking viable treatment options. Recent human and mouse studies have suggested that inhibiting peptidyl arginine deiminase enzymes (PAD) may be a novel breast cancer therapy. Based on the similarities between human breast cancer and mammary cancer in dogs and cats, we hypothesized that PAD inhibitors would also be an effective treatment for mammary cancer in these animals. METHODS: Canine and feline mammary cancer cell lines were treated with BB-Cl-Amidine (BB-CLA) and evaluated for viability and tumorigenicity. Endoplasmic reticulum stress was tested by western blot, immunofluorescence, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Canine and feline mammary cancer xenograft models were created using NOD scid gamma (NSG) mice, and were treated with BB-CLA for two weeks. RESULTS: We found that BB-CLA reduced viability and tumorigenicity of canine and feline mammary cancer cell lines in vitro. Additionally, we demonstrated that BB-CLA activates the endoplasmic reticulum stress pathway in these cells by downregulating 78 kDa Glucose-regulated Protein (GRP78), a potential target in breast cancer for molecular therapy, and upregulating the downstream target gene DNA Damage Inducible Transcript 3 (DDIT3). Finally, we established a mouse xenograft model of both canine and feline mammary cancer in which we preliminarily tested the effects of BB-CLA in vivo. CONCLUSION: We propose that our established mouse xenograft models will be useful for the study of mammary cancer in dogs and cats, and furthermore, that BB-CLA has potential as a novel therapeutic for mammary cancer in these species.


Assuntos
Amidinas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Mamárias Animais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Amidinas/química , Animais , Gatos , Modelos Animais de Doenças , Cães , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
PLoS One ; 13(4): e0194522, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614078

RESUMO

Discovering regulatory interactions between genes that specify the behavioral properties of cells remains an important challenge. We used the dynamics of transcriptional changes resolved by PRO-seq to identify a regulatory network responsible for endocrine resistance in breast cancer. We show that GDNF leads to endocrine resistance by switching the active state in a bi-stable feedback loop between GDNF, EGR1, and the master transcription factor ERα. GDNF stimulates MAP kinase, activating the transcription factors SRF and AP-1. SRF initiates an immediate transcriptional response, activating EGR1 and suppressing ERα. Newly translated EGR1 protein activates endogenous GDNF, leading to constitutive GDNF and EGR1 up-regulation, and the sustained down-regulation of ERα. Endocrine resistant MCF-7 cells are constitutively in the GDNF-high/ ERα-low state, suggesting that the state in the bi-stable feedback loop may provide a 'memory' of endocrine resistance. Thus, we identified a regulatory network switch that contributes to drug resistance in breast cancer.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Transdução de Sinais , Antineoplásicos Hormonais/uso terapêutico , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , DNA Polimerase II , Resistencia a Medicamentos Antineoplásicos/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Células MCF-7 , Motivos de Nucleotídeos , Ligação Proteica , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos
14.
Nat Ecol Evol ; 2(3): 537-548, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29379187

RESUMO

How evolutionary changes at enhancers affect the transcription of target genes remains an important open question. Previous comparative studies of gene expression have largely measured the abundance of messenger RNA, which is affected by post-transcriptional regulatory processes, hence limiting inferences about the mechanisms underlying expression differences. Here, we directly measured nascent transcription in primate species, allowing us to separate transcription from post-transcriptional regulation. We used precision run-on and sequencing to map RNA polymerases in resting and activated CD4+ T cells in multiple human, chimpanzee and rhesus macaque individuals, with rodents as outgroups. We observed general conservation in coding and non-coding transcription, punctuated by numerous differences between species, particularly at distal enhancers and non-coding RNAs. Genes regulated by larger numbers of enhancers are more frequently transcribed at evolutionarily stable levels, despite reduced conservation at individual enhancers. Adaptive nucleotide substitutions are associated with lineage-specific transcription and at one locus, SGPP2, we predict and experimentally validate that multiple substitutions contribute to human-specific transcription. Collectively, our findings suggest a pervasive role for evolutionary compensation across ensembles of enhancers that jointly regulate target genes.


Assuntos
Macaca mulatta/genética , Pan troglodytes/genética , Elementos Reguladores de Transcrição , Linfócitos T/metabolismo , Transcrição Gênica , Animais , Expressão Gênica , Humanos , Macaca mulatta/metabolismo , Masculino , Pan troglodytes/metabolismo
15.
Cell Tissue Res ; 370(2): 275-283, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28766045

RESUMO

We previously found that transgenic mice overexpressing MMTV-FLAG-hPAD2 (PAD2OE) developed spontaneous skin lesions, with a subset of these lesions progressing to invasive squamous cell carcinoma (SCC). The goal of this report was to better understand the potential mechanisms by which PAD2 overexpression promotes skin cancer. Here, PAD2OE mice were treated with the carcinogen, 9,10-dimethyl-1,2-benzanthracene and with O-tetradecanoylphorbol-13-acetate and then scored for papilloma formation. Additionally, tumor sections were evaluated for evidence of tumor cell invasion and inflammation. We found that the total number of papillomas was significantly increased in PAD2OE mice compared to controls. Histopathologic analysis of the lesions found that in PAD2OE skin tumors progressed to invasive SCC more frequently than controls. Additionally, we found that PAD2OE lesions were highly inflamed, with a dense inflammatory cell infiltrate and an associated increase in nuclear phospho-STAT3 (signal transducer and activator of transcription 3) in the transgenic tumors. These data suggest that overexpression of the hPAD2 transgene in the epidermis increases the malignant conversion rate of benign tumors by promoting an inflammatory microenvironment.


Assuntos
Inflamação/genética , Papiloma/genética , Desiminases de Arginina em Proteínas/genética , Neoplasias Cutâneas/genética , Regulação para Cima , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/patologia , Carcinógenos , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/complicações , Inflamação/patologia , Masculino , Camundongos , Camundongos Transgênicos , Papiloma/induzido quimicamente , Papiloma/complicações , Papiloma/patologia , Proteína-Arginina Desiminase do Tipo 2 , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol
16.
Cancer Lett ; 409: 30-41, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-28844713

RESUMO

Peptidylargininedeiminase 1 (PAD1) catalyzes protein for citrullination, and this activity has been linked to the epidermal cornification. However, a role for PAD1 in tumorigenesis, including breast cancers has not been previously explored. Here we first showed that PAD1 is overexpressed in human triple negative breast cancer (TNBC). In cultured cells and xenograft mouse models, PAD1 depletion or inhibition reduced cell proliferation, suppressed epithelial-mesenchymal transition, and prevented metastasis of MDA-MB-231 cells. These changes were correlated with a dramatic decrease in MMP2/9 expression. Furthermore, ERK1/2 and P38 MAPK signaling pathways are activated upon PAD1 silencing. Treatment with MEK1/2 inhibitor in PAD1 knockdown cells significantly recovered MMP2 expression, while inhibiting P38 activation only slightly elevated MMP9 levels. We then showed that PAD1 interacts with and citrullinates MEK1 thereby disrupting MEK1-catalyzed ERK1/2 phosphorylation, thus leading to the MMP2 overexpression. Collectively, our data indicate that PAD1 appears to promote tumorigenesis by regulating MEK1-ERK1/2-MMP2 signaling in TNBC. These results also raise the possibility that PAD1 may function as an important new biomarker for TNBC tumors and suggest that PAD1-specific inhibitors could potentially be utilized to treat metastatic breast cancer.


Assuntos
Hidrolases/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal , Feminino , Células HEK293 , Humanos , Hidrolases/antagonistas & inibidores , Hidrolases/biossíntese , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ornitina/análogos & derivados , Ornitina/farmacologia , Proteína-Arginina Desiminase do Tipo 1 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
17.
BMC Cancer ; 17(1): 378, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28549415

RESUMO

BACKGROUND: Penetration of the mammary gland basement membrane by cancer cells is a crucial first step in tumor invasion. Using a mouse model of ductal carcinoma in situ, we previously found that inhibition of peptidylarginine deiminase 2 (PAD2, aka PADI2) activity appears to maintain basement membrane integrity in xenograft tumors. The goal of this investigation was to gain insight into the mechanisms by which PAD2 mediates this process. METHODS: For our study, we modulated PAD2 activity in mammary ductal carcinoma cells by lentiviral shRNA-mediated depletion, lentiviral-mediated PAD2 overexpression, or PAD inhibition and explored the effects of these treatments on changes in cell migration and cell morphology. We also used these PAD2-modulated cells to test whether PAD2 may be required for EGF-induced cell migration. To determine how PAD2 might promote tumor cell migration in vivo, we tested the effects of PAD2 inhibition on the expression of several cell migration mediators in MCF10DCIS.com xenograft tumors. In addition, we tested the effect of PAD2 inhibition on EGF-induced ductal invasion and elongation in primary mouse mammary organoids. Lastly, using a transgenic mouse model, we investigated the effects of PAD2 overexpression on mammary gland development. RESULTS: Our results indicate that PAD2 depletion or inhibition suppresses cell migration and alters the morphology of MCF10DCIS.com cells. In addition, we found that PAD2 depletion suppresses the expression of the cytoskeletal regulatory proteins RhoA, Rac1, and Cdc42 and also promotes a mesenchymal to epithelial-like transition in tumor cells with an associated increase in the cell adhesion marker, E-cadherin. Our mammary gland organoid study found that inhibition of PAD2 activity suppresses EGF-induced ductal invasion. In vivo, we found that PAD2 overexpression causes hyperbranching in the developing mammary gland. CONCLUSION: Together, these results suggest that PAD2 plays a critical role in breast cancer cell migration. Our findings that EGF treatment increases protein citrullination and that PAD2 inhibition blocks EGF-induced cell migration suggest that PAD2 likely functions within the EGF signaling pathway to mediate cell migration.


Assuntos
Carcinoma Intraductal não Infiltrante/patologia , Movimento Celular/fisiologia , Neoplasias Mamárias Experimentais/patologia , Desiminases de Arginina em Proteínas/metabolismo , Animais , Carcinoma Intraductal não Infiltrante/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Organoides
18.
Cell Cycle ; 16(4): 360-366, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-27929740

RESUMO

The oocyte cytoplasmic lattices (CPLs) have long been predicted to function as a storage form for the maternal contribution of ribosomes to the early embryo. Our previous studies have demonstrated that ribosomal component S6 is stored in the oocyte CPLs and peptidylarginine deiminase 6 (PADI6) is critical for CPLs formation. Additionally, we found that depletion of PADI6 reduced de novo protein synthesis prior to the maternal-to-embryonic transition, therefore causing embryos to arrest at the 2-cell stage. Here, we present evidence further supporting the association of ribosomes with the CPLs by demonstrating that rRNAs are dramatically decreased in Padi6 KO oocytes. We also show that the abundance and localization of mRNAs is affected upon PADI6 depletion, suggesting that mRNAs are very possibly associated with CPLs. Consistent with this observation, the amount of the major RNA binding protein, MSY2, that is associated with the insoluble fraction of the oocytes after Triton X-100 extraction is also markedly decreased in the Padi6 KO oocytes. Furthermore, treatment of the oocytes with RNase A followed by Triton X-100 extraction severely impairs the localization of PADI6 and MSY2 in oocytes. These results indicate that mRNAs, possibly in a complex with MSY2 and PADI6, are bound in the CPLs and may play a role in securing the mRNA-MSY2 complex to the CPLs.


Assuntos
Citoplasma/metabolismo , Hidrolases/metabolismo , Oócitos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Feminino , Camundongos Knockout , Proteína-Arginina Desiminase do Tipo 6 , Desiminases de Arginina em Proteínas , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Solubilidade
19.
Sci Rep ; 6: 38727, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929094

RESUMO

Peptidylarginine deiminase (PADI) enzymes are increasingly being associated with the regulation of chromatin structure and gene activity via histone citrullination. As one of the PADI family members, PADI1 has been mainly reported to be expressed in the epidermis and uterus, where the protein in keratinocytes is thought to promote differentiation by citrullinating filament proteins. However, the roles of PADI1 in preimplantation development have not been addressed. Using a PADI1-specific inhibitor and Padi1-morpholino knockdown, we found that citrullination of histone tails at H4R3 and H3R2/8/17 were markedly reduced in the 2- and 4-cell embryos. Consistent with this observation, early embryo development was also arrested at the 4-cell stage upon depletion of PADI1 or inhibition of PADI1 enzyme activity. Additionally, by employing 5-ethynyl uridine (EU) incorporation analysis, ablation of PADI1 function led to a dramatic decrease in overall transcriptional activity, correlating well with the reduced levels of phosphorylation of RNA Pol II at Ser2 observed at 2- or 4-cell stage of embryos under Padi1 knockdown or inhibiting PADI1. Thus, our data reveal a novel function of PADI1 during early embryo development transitions by catalyzing histone tail citrullination, which facilitates early embryo genome transactivation.


Assuntos
Citrulinação , Desenvolvimento Embrionário , Hidrolases/metabolismo , Catálise , Feminino , Histonas/metabolismo , Humanos , Fosforilação , Proteína-Arginina Desiminase do Tipo 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA