RESUMO
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species Populus fremontii were studied in a controlled common garden during a record summer heatwave-where air temperature exceeded 48 °C. When water was not limiting, all genotypes cooled leaves 2 to 5 °C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72-h reduction in soil water, resulting in leaf temperatures rising 3 °C above air temperature and 1.3 °C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.
Assuntos
Folhas de Planta , Populus , Árvores , Água , Folhas de Planta/fisiologia , Populus/fisiologia , Populus/genética , Árvores/fisiologia , Árvores/genética , Solo , Genótipo , Calor Extremo , Temperatura Alta , EcossistemaRESUMO
Populus fremontii is among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper-arid riparian corridors. Yet, P. fremontii forests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C. We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eight P. fremontii populations spanning a 5.3°C mean annual temperature gradient in a well-watered common garden, and at source locations throughout the lower Colorado River Basin. Two major results emerged. First, despite having an exceptionally high Tcrit (the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceeded Tcrit , requiring evaporative leaf cooling to maintain leaf-to-air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations. Taken together, results suggest that under well-watered conditions, P. fremontii can regulate leaf temperature below Tcrit along the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.
Assuntos
Populus , Árvores , Árvores/fisiologia , Populus/fisiologia , Folhas de Planta/fisiologia , Sudoeste dos Estados Unidos , TemperaturaRESUMO
Selection on quantitative traits by heterogeneous climatic conditions can lead to substantial trait variation across a species range. In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits and their associated plasticities within a widespread species, we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood), a foundation riparian distributed throughout Arizona. Using SNP data and genotypes from 16 populations reciprocally planted in three common gardens, we first performed QST -FST analyses to detect selection on traits and trait plasticity. We then explored the environmental drivers of selection using trait-climate and plasticity-climate regressions. Three major findings emerged: (1) There was significant genetic variation in traits expressed in each of the common gardens and in the phenotypic plasticity of traits across gardens, both of which were heritable. (2) Based on QST -FST comparisons, there was evidence of selection in all traits measured; however, this result varied from no effect in one garden to highly significant in another, indicating that detection of past selection is environmentally dependent. We also found strong evidence of divergent selection on plasticity across environments for two traits. (3) Traits and/or their plasticity were often correlated with population source climate (R2 up to .77 and .66, respectively). These results suggest that steep climate gradients across the Southwest have played a major role in shaping the evolution of divergent phenotypic responses in populations and genotypes now experiencing climate change.
Assuntos
Populus , Árvores , Genótipo , Fenótipo , Populus/genética , Seleção Genética , Árvores/genéticaRESUMO
Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such as Populus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that (1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds, and leaf nitrogen. (2) For both defense and structural compounds, plastic responses to different garden climates depended on the climate in which a population or genotype originated. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from warmer provenances. (3) Trees from cool provenances growing in cool garden conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses in response to damage. (4) The combination of hot garden conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction after damage. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems, the effects of changes in phytochemical traits can be wide reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes.
Assuntos
Populus , Árvores , Animais , Mudança Climática , Ecossistema , Herbivoria , Insetos , Populus/genética , Árvores/genéticaRESUMO
Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world.
Assuntos
Ecossistema , Populus , Temperatura Alta , Folhas de Planta , Populus/genética , ÁrvoresRESUMO
Populus fremontii (Fremont cottonwood) is recognized as one of the most important foundation tree species in the southwestern USA and northern Mexico because of its ability to structure communities across multiple trophic levels, drive ecosystem processes and influence biodiversity via genetic-based functional trait variation. However, the areal extent of P. fremontii cover has declined dramatically over the last century due to the effects of surface water diversions, non-native species invasions and more recently climate change. Consequently, P. fremontii gallery forests are considered amongst the most threatened forest types in North America. In this paper, we unify four conceptual areas of genes to ecosystems research related to P. fremontii's capacity to survive or even thrive under current and future environmental conditions: (i) hydraulic function related to canopy thermal regulation during heat waves; (ii) mycorrhizal mutualists in relation to resiliency to climate change and invasion by the non-native tree/shrub, Tamarix; (iii) phenotypic plasticity as a mechanism for coping with rapid changes in climate; and (iv) hybridization between P. fremontii and other closely related Populus species where enhanced vigour of hybrids may preserve the foundational capacity of Populus in the face of environmental change. We also discuss opportunities to scale these conceptual areas from genes to the ecosystem level via remote sensing. We anticipate that the exploration of these conceptual areas of research will facilitate solutions to climate change with a foundation species that is recognized as being critically important for biodiversity conservation and could serve as a model for adaptive management of arid regions in the southwestern USA and around the world.
RESUMO
Species faced with rapidly shifting environments must be able to move, adapt, or acclimate in order to survive. One mechanism to meet this challenge is phenotypic plasticity: altering phenotype in response to environmental change. Here, we investigated the magnitude, direction, and consequences of changes in two key phenology traits (fall bud set and spring bud flush) in a widespread riparian tree species, Populus fremontii. Using replicated genotypes from 16 populations from throughout the species' thermal range, and reciprocal common gardens at hot, warm, and cool sites, we identified four major findings: (a) There are significant genetic (G), environmental (E), and GxE components of variation for both traits across three common gardens; (b) The magnitude of phenotypic plasticity is correlated with provenance climate, where trees from hotter, southern populations exhibited up to four times greater plasticity compared to the northern, frost-adapted populations; (c) Phenological mismatches are correlated with higher mortality as the transfer distances between provenance and garden increase; and (d) The relationship between plasticity and survival depends not only on the magnitude and direction of environmental transfer, but also on the type of environmental stress (i.e., heat or freezing), and how particular traits have evolved in response to that stress. Trees transferred to warmer climates generally showed small to moderate shifts in an adaptive direction, a hopeful result for climate change. Trees experiencing cooler climates exhibited large, non-adaptive changes, suggesting smaller transfer distances for assisted migration. This study is especially important as it deconstructs trait responses to environmental cues that are rapidly changing (e.g., temperature and spring onset) and those that are fixed (photoperiod), and that vary across the species' range. Understanding the magnitude and adaptive nature of phenotypic plasticity of multiple traits responding to multiple environmental cues is key to guiding restoration management decisions as climate continues to change.