Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 2013, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515438

RESUMO

Mitochondrial respiration plays a crucial role in determining the metabolic state of brown adipose tissue (BAT), due to its direct roles in thermogenesis, as well as through additional mechanisms. Here, we show that respiration-dependent retrograde signaling from mitochondria to nucleus contributes to genetic and metabolic reprogramming of BAT. In mouse BAT, ablation of LRPPRC (LRP130), a potent regulator of mitochondrial transcription and respiratory capacity, triggers down-regulation of thermogenic genes, promoting a storage phenotype in BAT. This retrograde regulation functions by inhibiting the recruitment of PPARγ to the regulatory elements of thermogenic genes. Reducing cytosolic Ca2+ reverses the attenuation of thermogenic genes in brown adipocytes with impaired respiratory capacity, while induction of cytosolic Ca2+ is sufficient to attenuate thermogenic gene expression, indicating that cytosolic Ca2+ mediates mitochondria-nucleus crosstalk. Our findings suggest respiratory capacity governs thermogenic gene expression and BAT function via mitochondria-nucleus communication, which in turn leads to either a thermogenic or storage mode.


Assuntos
Respiração Celular , Regulação da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transdução de Sinais , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Animais , Cálcio/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Regiões Promotoras Genéticas
2.
Nat Med ; 22(3): 312-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26808348

RESUMO

Uncoupling protein 1 (UCP1) is highly expressed in brown adipose tissue, where it generates heat by uncoupling electron transport from ATP production. UCP1 is also found outside classical brown adipose tissue depots, in adipocytes that are termed 'brite' (brown-in-white) or 'beige'. In humans, the presence of brite or beige (brite/beige) adipocytes is correlated with a lean, metabolically healthy phenotype, but whether a causal relationship exists is not clear. Here we report that human brite/beige adipocyte progenitors proliferate in response to pro-angiogenic factors, in association with expanding capillary networks. Adipocytes formed from these progenitors transform in response to adenylate cyclase activation from being UCP1 negative to being UCP1 positive, which is a defining feature of the beige/brite phenotype, while displaying uncoupled respiration. When implanted into normal chow-fed, or into high-fat diet (HFD)-fed, glucose-intolerant NOD-scid IL2rg(null) (NSG) mice, brite/beige adipocytes activated in vitro enhance systemic glucose tolerance. These adipocytes express neuroendocrine and secreted factors, including the pro-protein convertase PCSK1, which is strongly associated with human obesity. Pro-angiogenic conditions therefore drive the proliferation of human beige/brite adipocyte progenitors, and activated beige/brite adipocytes can affect systemic glucose homeostasis, potentially through a neuroendocrine mechanism.


Assuntos
Adipócitos/metabolismo , Glicemia/metabolismo , Intolerância à Glucose/metabolismo , Neovascularização Fisiológica , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Adipócitos/transplante , Adipócitos Marrons/metabolismo , Adipócitos Marrons/transplante , Adipócitos Brancos/metabolismo , Adipócitos Brancos/transplante , Adulto , Idoso , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Capilares , Transplante de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica , Encefalinas/genética , Encefalinas/metabolismo , Feminino , Imunofluorescência , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Homeostase , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Reação em Cadeia da Polimerase , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 1/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína Desacopladora 1 , Iodotironina Desiodinase Tipo II
3.
Nat Commun ; 6: 8995, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26688060

RESUMO

Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe(-/-) mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe(-/-) and Ldlr(-/-) mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Doenças Vasculares/metabolismo , Aminopiridinas/farmacologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Regulação da Expressão Gênica/fisiologia , Inflamação/genética , Macrófagos , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Doenças Vasculares/genética , Quinase Induzida por NF-kappaB
4.
J Vis Exp ; (102): e52982, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26382148

RESUMO

Lipid metabolism in liver is complex. In addition to importing and exporting lipid via lipoproteins, hepatocytes can oxidize lipid via fatty acid oxidation, or alternatively, synthesize new lipid via de novo lipogenesis. The net sum of these pathways is dictated by a number of factors, which in certain disease states leads to fatty liver disease. Excess hepatic lipid accumulation is associated with whole body insulin resistance and coronary heart disease. Tools to study lipid metabolism in hepatocytes are useful to understand the role of hepatic lipid metabolism in certain metabolic disorders. In the liver, hepatocytes regulate the breakdown and synthesis of fatty acids via ß-fatty oxidation and de novo lipogenesis, respectively. Quantifying metabolism in these pathways provides insight into hepatic lipid handling. Unlike in vitro quantification, using primary hepatocytes, making measurements in vivo is technically challenging and resource intensive. Hence, quantifying ß-fatty acid oxidation and de novo lipogenesis in cultured mouse hepatocytes provides a straight forward method to assess hepatocyte lipid handling. Here we describe a method for the isolation of primary mouse hepatocytes, and we demonstrate quantification of ß-fatty acid oxidation and de novo lipogenesis, using radiolabeled substrates.


Assuntos
Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Hepatócitos/citologia , Metabolismo dos Lipídeos , Lipogênese , Fígado/citologia , Fígado/metabolismo , Camundongos , Oxirredução , Palmitatos/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Trítio/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-26175716

RESUMO

In murine and human brown adipose tissue (BAT), mitochondria are powerful generators of heat that safely metabolize fat, a feature that has great promise in the fight against obesity and diabetes. Recent studies suggest that the actions of mitochondria extend beyond their conventional role as generators of heat. There is mounting evidence that impaired mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1 and other BAT-selective genes, implying that mitochondria exert transcriptional control over the brown fat gene program. In this review, we discuss the current understanding of brown fat mitochondria, their potential role in transcriptional control of the brown fat gene program, and potential strategies to treat obesity in humans by leveraging thermogenesis in brown adipocytes.

6.
PLoS One ; 10(5): e0125617, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933096

RESUMO

OXPHOS is believed to play an important role in non-alcoholic fatty liver disease (NAFLD), however, precise mechanisms whereby OXPHOS influences lipid homeostasis are incompletely understood. We previously reported that ectopic expression of LRPPRC, a protein that increases cristae density and OXPHOS, promoted fatty acid oxidation in cultured primary hepatocytes. To determine the biological significance of that observation and define underlying mechanisms, we have ectopically expressed LRPPRC in mouse liver in the setting of NAFLD. Interestingly, ectopic expression of LRPPRC in mouse liver completely interdicted NAFLD, including inflammation. Consistent with mitigation of NAFLD, two markers of hepatic insulin resistance--ROS and PKCε activity--were both modestly reduced. As reported by others, improvement of NAFLD was associated with improved whole-body insulin sensitivity. Regarding hepatic lipid homeostasis, the ratio of NAD+ to NADH was dramatically increased in mouse liver replete with LRPPRC. Pharmacological activators and inhibitors of the cellular respiration respectively increased and decreased the [NAD+]/[NADH] ratio, indicating respiration-mediated control of the [NAD+]/[NADH] ratio. Supporting a prominent role for NAD+, increasing the concentration of NAD+ stimulated complete oxidation of fatty acids. Importantly, NAD+ rescued impaired fatty acid oxidation in hepatocytes deficient for either OXPHOS or SIRT3. These data are consistent with a model whereby augmented hepatic OXPHOS increases NAD+, which in turn promotes complete oxidation of fatty acids and protects against NAFLD.


Assuntos
Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/genética , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Dieta Hiperlipídica , Regulação da Expressão Gênica , Hepatócitos/patologia , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , NAD/metabolismo , Proteínas de Neoplasias/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , Fosforilação Oxidativa , Cultura Primária de Células , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Transdução de Sinais , Sirtuína 3/deficiência , Sirtuína 3/genética
7.
J Clin Invest ; 124(2): 768-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24430182

RESUMO

Sirtuin 3 (SIRT3), an important regulator of energy metabolism and lipid oxidation, is induced in fasted liver mitochondria and implicated in metabolic syndrome. In fasted liver, SIRT3-mediated increases in substrate flux depend on oxidative phosphorylation (OXPHOS), but precisely how OXPHOS meets the challenge of increased substrate oxidation in fasted liver remains unclear. Here, we show that liver mitochondria in fasting mice adapt to the demand of increased substrate oxidation by increasing their OXPHOS efficiency. In response to cAMP signaling, SIRT3 deacetylated and activated leucine-rich protein 130 (LRP130; official symbol, LRPPRC), promoting a mitochondrial transcriptional program that enhanced hepatic OXPHOS. Using mass spectrometry, we identified SIRT3-regulated lysine residues in LRP130 that generated a lysine-to-arginine (KR) mutant of LRP130 that mimics deacetylated protein. Compared with wild-type LRP130 protein, expression of the KR mutant increased mitochondrial transcription and OXPHOS in vitro. Indeed, even when SIRT3 activity was abolished, activation of mitochondrial transcription and OXPHOS by the KR mutant remained robust, further highlighting the contribution of LRP130 deacetylation to increased OXPHOS in fasted liver. These data establish a link between nutrient sensing and mitochondrial transcription that regulates OXPHOS in fasted liver and may explain how fasted liver adapts to increased substrate oxidation.


Assuntos
Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa , Sirtuína 3/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Arginina/metabolismo , Citrato (si)-Sintase/metabolismo , AMP Cíclico/metabolismo , Metabolismo Energético/genética , Alimentos , Glucagon/metabolismo , Hepatócitos/citologia , Fígado/metabolismo , Lisina/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Transcrição Gênica
8.
PLoS One ; 8(10): e77851, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167585

RESUMO

Obesity places major demands on the protein folding capacity of the endoplasmic reticulum (ER), resulting in ER stress, a condition that promotes hepatic insulin resistance and steatosis. Here we identify the transcription factor, Kruppel-like factor 15 (KLF15), as an essential mediator of ER stress-induced insulin resistance in the liver. Mice with a targeted deletion of KLF15 exhibit increased hepatic ER stress, inflammation, and JNK activation compared to WT mice; however, KLF15 (-/-) mice are protected against hepatic insulin resistance and fatty liver under high-fat feeding conditions and in response to pharmacological induction of ER stress. The mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular energy homeostasis, has been shown to cooperate with ER stress signaling pathways to promote hepatic insulin resistance and lipid accumulation. We find that the uncoupling of ER stress and insulin resistance in KLF15 (-/-) liver is associated with the maintenance of a low energy state characterized by decreased mTORC1 activity, increased AMPK phosphorylation and PGC-1α expression and activation of autophagy, an intracellular degradation process that enhances hepatic insulin sensitivity. Furthermore, in primary hepatocytes, KLF15 deficiency markedly inhibits activation of mTORC1 by amino acids and insulin, suggesting a mechanism by which KLF15 controls mTORC1-mediated insulin resistance. This study establishes KLF15 as an important molecular link between ER stress and insulin action.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Resistência à Insulina , Fígado/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Fatores de Transcrição Kruppel-Like , Fígado/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Fosforilação , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética
9.
Circ Res ; 113(7): 891-901, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23819990

RESUMO

RATIONALE: Mitochondria, although required for cellular ATP production, are also known to have other important functions that may include modulating cellular responses to environmental stimuli. However, the mechanisms whereby mitochondria impact cellular phenotype are not yet clear. OBJECTIVE: To determine how mitochondria impact endothelial cell function. METHODS AND RESULTS: We report here that stimuli for endothelial cell proliferation evoke strong upregulation of mitochondrial uncoupling protein 2 (UCP2). Analysis in silico indicated increased UCP2 expression is common in highly proliferative cell types, including cancer cells. Upregulation of UCP2 was critical for controlling mitochondrial membrane potential (Δψ) and superoxide production. In the absence of UCP2, endothelial growth stimulation provoked mitochondrial network fragmentation and premature senescence via a mechanism involving superoxide-mediated p53 activation. Mitochondrial network fragmentation was both necessary and sufficient for the impact of UCP2 on endothelial cell phenotype. CONCLUSIONS: These data identify a novel mechanism whereby mitochondria preserve normal network integrity and impact cell phenotype via dynamic regulation of UCP2.


Assuntos
Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Fenótipo , Proteína Supressora de Tumor p53/metabolismo , Animais , Aorta/citologia , Bovinos , Proliferação de Células , Senescência Celular , Células Endoteliais/citologia , Canais Iônicos/genética , Pulmão/citologia , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Superóxidos/metabolismo , Proteína Desacopladora 2 , Regulação para Cima
11.
PLoS Genet ; 8(6): e1002761, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719268

RESUMO

Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes.


Assuntos
Glicemia , Gluconeogênese , Histona Desmetilases com o Domínio Jumonji , Fígado/metabolismo , Animais , Glicemia/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Gluconeogênese/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Ratos , Fatores Estimuladores Upstream/metabolismo
12.
Am J Physiol Endocrinol Metab ; 302(7): E807-16, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22275755

RESUMO

TRPM2 Ca(2+)-permeable cation channel is widely expressed and activated by markers of cellular stress. Since inflammation and stress play a major role in insulin resistance, we examined the role of TRPM2 Ca(2+) channel in glucose metabolism. A 2-h hyperinsulinemic euglycemic clamp was performed in TRPM2-deficient (KO) and wild-type mice to assess insulin sensitivity. To examine the effects of diet-induced obesity, mice were fed a high-fat diet for 4-10 mo, and metabolic cage and clamp studies were conducted in conscious mice. TRPM2-KO mice were more insulin sensitive partly because of increased glucose metabolism in peripheral organs. After 4 mo of high-fat feeding, TRPM2-KO mice were resistant to diet-induced obesity, and this was associated with increased energy expenditure and elevated expressions of PGC-1α, PGC-1ß, PPARα, ERRα, TFAM, and MCAD in white adipose tissue. Hyperinsulinemic euglycemic clamps showed that TRPM2-KO mice were more insulin sensitive, with increased Akt and GSK-3ß phosphorylation in heart. Obesity-mediated inflammation in adipose tissue and liver was attenuated in TRPM2-KO mice. Overall, TRPM2 deletion protected mice from developing diet-induced obesity and insulin resistance. Our findings identify a novel role of TRPM2 Ca(2+) channel in the regulation of energy expenditure, inflammation, and insulin resistance.


Assuntos
Metabolismo Energético/fisiologia , Glucose/metabolismo , Canais de Cátion TRPM/fisiologia , Animais , Western Blotting , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Calmodulina/metabolismo , Calorimetria Indireta , Gorduras na Dieta/farmacologia , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Imunoprecipitação , Inflamação/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Knockout , Miocárdio/enzimologia , Miocárdio/metabolismo , Consumo de Oxigênio/fisiologia , Fosforilação , RNA/biossíntese , RNA/genética , Superóxido Dismutase/metabolismo
13.
J Biol Chem ; 286(48): 41253-41264, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21971050

RESUMO

Impaired oxidative phosphorylation (OXPHOS) is implicated in several metabolic disorders. Even though mitochondrial DNA encodes several subunits critical for OXPHOS, the metabolic consequence of activating mitochondrial transcription remains unclear. We show here that LRP130, a protein involved in Leigh syndrome, increases hepatic ß-fatty acid oxidation. Using convergent genetic and biochemical approaches, we demonstrate LRP130 complexes with the mitochondrial RNA polymerase to activate mitochondrial transcription. Activation of mitochondrial transcription is associated with increased OXPHOS activity, increased supercomplexes, and denser cristae, independent of mitochondrial biogenesis. Consistent with increased oxidative phosphorylation, ATP levels are increased in both cells and mouse liver, whereas coupled respiration is increased in cells. We propose activation of mitochondrial transcription remodels mitochondria and enhances oxidative metabolism.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Fosforilação Oxidativa , Animais , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Ácidos Graxos/genética , Células Hep G2 , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Camundongos , Mitocôndrias Hepáticas/genética , Proteínas Mitocondriais/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Oxirredução , Consumo de Oxigênio/fisiologia , Transcrição Gênica/fisiologia
15.
J Hepatol ; 55(3): 673-682, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21256905

RESUMO

BACKGROUND & AIMS: Mechanisms underlying synergistic liver injury caused by alcohol and obesity are not clear. We have produced a mouse model of synergistic steatohepatitis by recapitulating the natural history of the synergism seen in patients for mechanistic studies. METHODS: Moderate obesity was induced in mice by 170% overnutrition in calories using intragastric overfeeding of high fat diet. Alcohol (low or high dose) was then co-administrated to determine its effects. RESULTS: Moderate obesity plus alcohol intake causes synergistic steatohepatitis in an alcohol dose-dependent manner. A heightened synergism is observed when a high alcohol dose (32g/kg/d) is used, resulting in plasma ALT reaching 392±28U/L, severe steatohepatitis with pericellular fibrosis, marked M1 macrophage activation, a 40-fold induction of iNos, and intensified nitrosative stress in the liver. Hepatic expression of genes for mitochondrial biogenesis and metabolism are significantly downregulated, and hepatic ATP level is decreased. Synergistic ER stress evident by elevated XBP-1, GRP78 and CHOP is accompanied by hyperhomocysteinemia. Despite increased caspase 3/7 cleavage, their activities are decreased in a redox-dependent manner. Neither increased PARP cleavage nor TUNEL positive hepatocytes are found, suggesting a shift of apoptosis to necrosis. Surprisingly, the synergism mice have increased plasma adiponectin and hepatic p-AMPK, but adiponectin resistance is shown downstream of p-AMPK. CONCLUSIONS: Nitrosative stress mediated by M1 macrophage activation, adiponectin resistance, and accentuated ER and mitochondrial stress underlie potential mechanisms for synergistic steatohepatitis caused by moderate obesity and alcohol.


Assuntos
Etanol/farmacologia , Fígado Gorduroso/metabolismo , Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/genética , Obesidade/complicações , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Alanina Transaminase/sangue , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Arginase/genética , Arginase/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Interleucina-10/genética , Interleucina-10/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Obesidade/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Diabetes ; 58(7): 1499-508, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19366863

RESUMO

OBJECTIVE: The peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1 family of transcriptional coactivators controls hepatic function by modulating the expression of key metabolic enzymes. Hepatic gain of function and complete genetic ablation of PGC-1alpha show that this coactivator is important for activating the programs of gluconeogenesis, fatty acid oxidation, oxidative phosphorylation, and lipid secretion during times of nutrient deprivation. However, how moderate changes in PGC-1alpha activity affect metabolism and energy homeostasis has yet to be determined. RESEARCH DESIGN AND METHODS: To identify key metabolic pathways that may be physiologically relevant in the context of reduced hepatic PGC-1alpha levels, we used the Cre/Lox system to create mice heterozygous for PGC-1alpha specifically within the liver (LH mice). RESULTS: These mice showed fasting hepatic steatosis and diminished ketogenesis associated with decreased expression of genes involved in mitochondrial beta-oxidation. LH mice also exhibited high circulating levels of triglyceride that correlated with increased expression of genes involved in triglyceride-rich lipoprotein assembly. Concomitant with defects in lipid metabolism, hepatic insulin resistance was observed both in LH mice fed a high-fat diet as well as in primary hepatocytes. CONCLUSIONS: These data highlight both the dose-dependent and long-term effects of reducing hepatic PGC-1alpha levels, underlining the importance of tightly regulated PGC-1alpha expression in the maintenance of lipid homeostasis and glucose metabolism.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/fisiologia , Resistência à Insulina , Fígado/fisiologia , Transativadores/genética , Triglicerídeos/sangue , Tecido Adiposo/anatomia & histologia , Animais , Glicemia/metabolismo , Composição Corporal , Técnicas de Cultura de Células , Cruzamentos Genéticos , Fígado Gorduroso/genética , Feminino , Hepatócitos/citologia , Homeostase , Insulina/sangue , Integrases/genética , Cetonas/sangue , Lipídeos/sangue , Lipídeos/fisiologia , Fígado/anatomia & histologia , Camundongos , Camundongos Transgênicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Interferente Pequeno/genética , Fatores de Transcrição
17.
J Biol Chem ; 283(46): 31960-7, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18728005

RESUMO

The PGC-1 coactivators are important regulators of oxidative metabolism. We previously demonstrated that LRP130 is a binding partner of PGC-1alpha, required for hepatic gluconeogenesis. LRP130 is the gene mutated in Leigh syndrome French Canadian variant, a rare neurodegenerative disease. The importance of LRP130 in other, non-hepatocyte biology remains obscure. To better understand PGC-1 coactivator function in brown fat development, we explored the metabolic role of LRP130 in brown adipocyte differentiation. We show that LRP130 is preferentially enriched in brown fat compared with white, and induced in a PGC-1-dependent manner during differentiation. Despite intact PGC-1 coactivator expression, brown fat cells deficient for LRP130 exhibit attenuated expression of several genes characteristic of brown fat, including uncoupling protein 1. Oxygen consumption studies support a specific defect in proton leak due to attenuated uncoupling protein 1 expression. Notably, brown fat cell development common to both PGC-1 coactivators is governed by LRP130. Conversely, the cAMP response controlled by PGC-1alpha is not regulated by LRP130. These data implicate LRP130 in brown fat cell development and differentiation.


Assuntos
Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Diferenciação Celular , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Prótons , RNA Interferente Pequeno , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteína Desacopladora 1
18.
Genes Dev ; 22(10): 1397-409, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18483224

RESUMO

Brown fat is a specialized tissue that can dissipate energy and counteract obesity through a pattern of gene expression that greatly increases mitochondrial content and uncoupled respiration. PRDM16 is a zinc-finger protein that controls brown fat determination by stimulating brown fat-selective gene expression, while suppressing the expression of genes selective for white fat cells. To determine the mechanisms regulating this switching of gene programs, we purified native PRDM16 protein complexes from fat cells. We show here that the PRDM16 transcriptional holocompex contains C-terminal-binding protein-1 (CtBP-1) and CtBP-2, and this direct interaction selectively mediates the repression of white fat genes. This repression occurs through recruiting a PRDM16/CtBP complex onto the promoters of white fat-specific genes such as resistin, and is abolished in the genetic absence of CtBP-1 and CtBP-2. In turn, recruitment of PPAR-gamma-coactivator-1alpha (PGC-1alpha) and PGC-1beta to the PRDM16 complex displaces CtBP, allowing this complex to powerfully activate brown fat genes, such as PGC-1alpha itself. These data show that the regulated docking of the CtBP proteins on PRDM16 controls the brown and white fat-selective gene programs.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Oxirredutases do Álcool/fisiologia , Diferenciação Celular/genética , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Células 3T3 , Células 3T3-L1 , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Oxirredutases do Álcool/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas Correpressoras , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genes Reguladores , Camundongos , Modelos Biológicos , Complexos Multiproteicos/fisiologia , Fosfoproteínas/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo
19.
Genes Dev ; 20(21): 2996-3009, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17050673

RESUMO

Leigh syndrome French Canadian variant (LSFC) is an autosomal recessive neurodegenerative disorder due to mutation in the LRP130 (leucine-rich protein 130 kDa) gene. Unlike classic Leigh syndrome, the French Canadian variant spares the heart, skeletal muscle, and kidneys, but severely affects the liver. The precise role of LRP130 in cytochrome c oxidase deficiency and hepatic lactic acidosis that accompanies this disorder is unknown. We show here that LRP130 is a component of the PGC-1alpha (peroxisome proliferator-activated receptor coactivator 1-alpha) transcriptional coactivator holocomplex and regulates expression of PEPCK (phosphoenolpyruvate carboxykinase), G6P (glucose-6-phosphatase), and certain mitochondrial genes through PGC-1alpha. Reduction of LRP130 in fasted mice via adenoviral RNA interference (RNAi) vector blocks the induction of PEPCK and G6P, and blunts hepatic glucose output. LRP130 is also necessary for PGC-1alpha-dependent transcription of several mitochondrial genes in vivo. These data link LRP130 and PGC-1alpha to defective hepatic energy homeostasis in LSFC, and reveal a novel regulatory mechanism of glucose homeostasis.


Assuntos
Regulação da Expressão Gênica , Gluconeogênese/genética , Glucose/metabolismo , Doença de Leigh/metabolismo , Proteínas de Neoplasias/metabolismo , Transativadores/metabolismo , Animais , Sítios de Ligação , Imunoprecipitação da Cromatina , Metabolismo Energético/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Genes Mitocondriais/genética , Glucose-6-Fosfatase/genética , Homeostase/genética , Doença de Leigh/genética , Fígado/metabolismo , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fatores de Transcrição
20.
Cell ; 119(1): 121-35, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15454086

RESUMO

PGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner. Despite having reduced mitochondrial function, PGC-1alpha null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/genética , Gluconeogênese/genética , Hipercinese/genética , Mitocôndrias/metabolismo , Transativadores/genética , Adaptação Fisiológica/genética , Animais , Regulação do Apetite/genética , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/metabolismo , Doenças dos Gânglios da Base/patologia , Encéfalo/fisiopatologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Hepatócitos/metabolismo , Homeostase/genética , Hipercinese/patologia , Hipercinese/fisiopatologia , Fígado/metabolismo , Fígado/fisiopatologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/deficiência , Fatores de Transcrição , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA