Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958676

RESUMO

Profiling bacterial populations in mixed communities is a common task in microbiology. Sequencing of 16S small subunit ribosomal-RNA (16S rRNA) gene amplicons is a widely accepted and functional approach but relies on amplification primers and cannot quantify isotope incorporation. Tandem mass spectrometry proteotyping is an effective alternative for taxonomically profiling microorganisms. We suggest that targeted proteotyping approaches can complement traditional population analyses. Therefore, we describe an approach to assess bacterial community compositions at the family level using the taxonomic marker protein GroEL, which is ubiquitously found in bacteria, except a few obligate intracellular species. We refer to our method as GroEL-proteotyping. GroEL-proteotyping is based on high-resolution tandem mass spectrometry of GroEL peptides and identification of GroEL-derived taxa via a Galaxy workflow and a subsequent Python-based analysis script. Its advantage is that it can be performed with a curated and extendable sample-independent database and that GroEL can be pre-separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to reduce sample complexity, improving GroEL identification while simultaneously decreasing the instrument time. GroEL-proteotyping was validated by employing it on a comprehensive raw dataset obtained through a metaproteome approach from synthetic microbial communities as well as real human gut samples. Our data show that GroEL-proteotyping enables fast and straightforward profiling of highly abundant taxa in bacterial communities at reasonable taxonomic resolution.


Assuntos
Microbiota , Espectrometria de Massas em Tandem , Humanos , RNA Ribossômico 16S/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Microorganisms ; 11(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004701

RESUMO

Phages influence microbial communities, can be applied in phage therapy, or may serve as bioindicators, e.g., in (waste)water management. We here characterized the Escherichia phage vB_EcoS-EE09 isolated from an urban wastewater treatment plant effluent. Phage vB_EcoS-EE09 belongs to the genus Dhillonvirus, class Caudoviricetes. It has an icosahedral capsid with a long non-contractile tail and a dsDNA genome with an approximate size of 44 kb and a 54.6% GC content. Phage vB_EcoS-EE09 infected 12 out of the 17 E. coli strains tested. We identified 16 structural phage proteins, including the major capsid protein, in cell-free lysates by protein mass spectrometry. Comparative proteomics of protein extracts of infected E. coli cells revealed that proteins involved in amino acid and protein metabolism were more abundant in infected compared to non-infected cells. Among the proteins involved in the stress response, 74% were less abundant in the infected cultures compared to the non-infected controls, with six proteins showing significant less abundance. Repressing the expression of these proteins may be a phage strategy to evade host defense mechanisms. Our results contribute to diversifying phage collections, identifying structural proteins to enable better reliability in annotating taxonomically related phage genomes, and understanding phage-host interactions at the protein level.

3.
Sci Total Environ ; 856(Pt 2): 159265, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206900

RESUMO

Ozonation is an established solution for organic micropollutant (OMP) abatement in tertiary wastewater treatment. Biofiltration is the most common process for the biological post-treatment step, which is generally required to remove undesired oxidation products from the reaction of ozone with water matrix compounds. This study comparatively investigates the effect of filter media on the removal of organic contaminants and on biofilm properties for biologically activated carbon (BAC) and anthracite biofilters. Biofilms were analysed in two pilot-scale filters that have been operated for >50,000 bed volumes as post-treatment for ozonated wastewater treatment plant effluent. In parallel, the removal performance of bulk organics and OMP, including differentiation of adsorption and biotransformation through sodium azide inhibition, were carried out in bench-scale filter columns filled with material from the pilot filters. The use of BAC instead of anthracite resulted in an improved removal of organic bulk parameters, dissolved oxygen, and OMP. The OMP removal observed in the BAC filter but not in the anthracite filter was based on adsorption for most of the investigated compounds. For valsartan, however, biotransformation was found to be the dominant pathway, indicating that conditions for biotransformation of certain OMP are better on BAC than on anthracite. Adenosine triphosphate analyses in the media-attached biofilms of the pilot filters showed that biomass concentrations in the BAC filter were significantly higher than in the anthracite filter. The microbial communities (16S rRNA gene sequencing) appeared to be similar with respect to the types of organisms occurring on both filter materials. Alpha diversity also exhibited little variation between filter media. Beta diversity analysis, however, revealed that filter media and bed depth substantially influenced the biofilm composition. In practice, the impact of filter media on biofilm properties and biotransformation processes should be considered for the design of biofilters.


Assuntos
Microbiota , Poluentes Químicos da Água , Purificação da Água , Filtração/métodos , RNA Ribossômico 16S , Purificação da Água/métodos , Carvão Vegetal , Carvão Mineral
4.
BMC Genomics ; 22(1): 464, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157973

RESUMO

BACKGROUND: Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS: Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS: The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.


Assuntos
Alcaloides , Burkholderiales/enzimologia , Manganês , Oxirredutases , Pseudomonas/enzimologia , Burkholderiales/genética , Toxinas de Cianobactérias , Genoma Bacteriano , Leptothrix , Oxirredução , Oxirredutases/metabolismo , Pseudomonas/genética
5.
Sci Total Environ ; 729: 138924, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32361450

RESUMO

Cylindrospermopsin (CYN) is a toxic alkaloid highly persistent in aquatic environments. Biological removal of CYN was described previously. However, no transformation products formed by biological processes could be identified so far. Here, we describe that various manganese-oxidizing bacteria (MOB) transform CYN completely at an initial mean concentration of 7 mg L-1 (17 µM) within 3 to 34 days. Regardless of the strain, and transformation rate, transformation of CYN by MOB led to the same seven transformation products identified by mass spectrometry, which suggests that the removal of CYN by MOB follows a similar mechanism. Oxidation was the main transformation process, and the uracil moiety was the most susceptible part of the CYN molecule. In vitro cytotoxicity tests with the transformation products of CYN formed by one of the tested strains against the two human liver cell lines HepG2 and HepaRG, revealed that the transformation products were substantially less toxic than pure CYN for both cell lines. The results suggest that incubation with MOB might be an option for water treatment to remove CYN and may allow more detailed studies on the fate of CYN in the environment.


Assuntos
Bactérias , Alcaloides , Toxinas Bacterianas , Toxinas de Cianobactérias , Humanos , Fígado , Manganês , Oxirredução , Uracila/análogos & derivados
6.
Chemosphere ; 238: 124625, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31466008

RESUMO

The cyanotoxin cylindrospermopsin was discovered during a drinking water-related outbreak of human poisoning in 1979. Knowledge about the degradation of cylindrospermopsin in waterbodies is limited. So far, only few cylindrospermopsin-removing bacteria have been described. Manganese-oxidizing bacteria remove a variety of organic compounds. However, this has not been assessed for cyanotoxins yet. We investigated cylindrospermopsin removal by manganese-oxidizing bacteria, isolated from natural and technical systems. Cylindrospermopsin removal was evaluated under different conditions. We analysed the correlation between the amount of oxidized manganese and the cylindrospermopsin removal, as well as the removal of cylindrospermopsin by sterile biogenic oxides. Removal rates in the range of 0.4-37.0 µg L-1 day-1 were observed. When MnCO3 was in the media Pseudomonas sp. OF001 removed ∼100% of cylindrospermopsin in 3 days, Comamonadaceae bacterium A210 removed ∼100% within 14 days, and Ideonella sp. A288 and A226 removed 65% and 80% within 28 days, respectively. In the absence of Mn2+, strain A288 did not remove cylindrospermopsin, while the other strains removed 5-16%. The amount of manganese oxidized by the strains during the experiment did not correlate with the amount of cylindrospermopsin removed. However, the mere oxidation of Mn2+ was indispensable for cylindrospermopsin removal. Cylindrospermopsin removal ranging from 0 to 24% by sterile biogenic oxides was observed. Considering the efficient removal of cylindrospermopsin by the tested strains, manganese-oxidizing bacteria might play an important role in cylindrospermopsin removal in the environment. Besides, manganese-oxidizing bacteria could be promising candidates for biotechnological applications for cylindrospermopsin removal in water treatment plants.


Assuntos
Toxinas Bacterianas/análise , Burkholderiales/metabolismo , Comamonadaceae/metabolismo , Manganês/metabolismo , Pseudomonas/metabolismo , Uracila/análogos & derivados , Purificação da Água/métodos , Alcaloides , Toxinas de Cianobactérias , Água Potável/metabolismo , Compostos de Manganês/metabolismo , Oxirredução , Óxidos/metabolismo , Uracila/análise
7.
Environ Sci Technol ; 52(6): 3615-3624, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29473745

RESUMO

Chlordecone is a synthetic organochlorine pesticide, extensively used in banana plantations of the French West Indies from 1972 to 1993. Due to its environmental persistence and bioaccumulation, it has dramatic public health and socio-economic impact. Here we describe a method for carbon-directed compound specific isotope analysis (CSIA) for chlordecone and apply it to monitor biotic and abiotic reductive transformation reactions, selected on the basis of their distinct product profiles (polychloroindenes versus lower chlorinated hydrochlordecones). Significant carbon isotopic enrichments were observed for all microbially mediated transformations (εbulk = -6.8‰ with a Citrobacter strain and εbulk = -4.6‰ with a bacterial consortium) and for two abiotic transformations (εbulk = -4.1‰ with zerovalent iron and εbulk = -2.6‰ with sodium sulfide and vitamin B12). The reaction with titanium(III) citrate and vitamin B12, which shows the product profile most similar to that observed in biotic transformation, led to low carbon isotope enrichment (εbulk =-0.8‰). The CSIA protocol was also applied on representative chlordecone formulations previously used in the French West Indies, giving similar chlordecone δ13C values from -31.1 ± 0.2‰ to -34.2 ± 0.2‰ for all studied samples. This allows the in situ application of CSIA for the assessment of chlordecone persistence.


Assuntos
Clordecona , Hidrocarbonetos Clorados , Biodegradação Ambiental , Isótopos de Carbono , Fracionamento Químico , Compostos Orgânicos
8.
Environ Sci Technol ; 51(7): 3714-3724, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28233989

RESUMO

Dehalococcoides mccartyi strain CBDB1 and Dehalobacter strain 14DCB1 are organohalide-respiring microbes of the phyla Chloroflexi and Firmicutes, respectively. Here, we report the transformation of chloroanilines by these two bacterial strains via dissimilar dehalogenation pathways and discuss the underlying mechanism with quantum chemically calculated net atomic charges of the substrate Cl, H, and C atoms. Strain CBDB1 preferentially removed Cl doubly flanked by two Cl or by one Cl and NH2, whereas strain 14DCB1 preferentially dechlorinated Cl that has an ortho H. For the CBDB1-mediated dechlorination, comparative analysis with Hirshfeld charges shows that the least-negative Cl discriminates active from nonactive substrates in 14 out of 15 cases and may represent the preferred site of primary attack through cob(I)alamin. For the latter trend, three of seven active substrates provide strong evidence, with partial support from three of the remaining four substrates. Regarding strain 14DCB1, the most positive carbon-attached H atom discriminates active from nonactive chloroanilines in again 14 out of 15 cases. Here, regioselectivity is governed for 10 of the 11 active substrates by the most positive H attached to the highest-charge (most positive or least negative) aromatic C carrying the Cl to be removed. These findings suggest the aromatic ring H as primary site of attack through the supernucleophile Co(I), converting an initial H bond to a full electron transfer as start of the reductive dehalogenation. For both mechanisms, one- and two-electron transfer to Cl (strain CBDB1) or H (strain 14DCB1) are compatible with the presently available data. Computational chemistry research into reaction intermediates and pathways may further aid in understanding the bacterial reductive dehalogenation at the molecular level.


Assuntos
Chloroflexi/metabolismo , Halogenação , Estrutura Molecular , Peptococcaceae
9.
mBio ; 7(3)2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27143384

RESUMO

UNLABELLED: The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene that was affiliated with a diverse cluster of 16S rRNA gene sequences prevalent in marine sediments was obtained from sediments of Aarhus Bay, Denmark. The distinctive gene content of this cell suggests metabolic characteristics that differ from those of known DEH and Chloroflexi The presence of genes encoding dissimilatory sulfite reductase (Dsr) suggests that DEH could respire oxidized sulfur compounds, although Chloroflexi have never been implicated in this mode of sulfur cycling. Using long-range PCR assays targeting DEH dsr loci, dsrAB genes were amplified and sequenced from various marine sediments. Many of the amplified dsrAB sequences were affiliated with the DEH Dsr clade, which we propose equates to a family-level clade. This provides supporting evidence for the potential for sulfite reduction by diverse DEH species. DEH-C11 also harbored genes encoding reductases for arsenate, dimethyl sulfoxide, and halogenated organics. The reductive dehalogenase homolog (RdhA) forms a monophyletic clade along with RdhA sequences from various DEH-derived contigs retrieved from available metagenomes. Multiple facts indicate that this RdhA may not be a terminal reductase. The presence of other genes indicated that nutrients and energy may be derived from the oxidation of substituted homocyclic and heterocyclic aromatic compounds. Together, these results suggest that marine DEH play a previously unrecognized role in sulfur cycling and reveal the potential for expanded catabolic and respiratory functions among subsurface DEH. IMPORTANCE: Sediments underlying our oceans are inhabited by microorganisms in cell numbers similar to those estimated to inhabit the oceans. Microorganisms in sediments consist of various diverse and uncharacterized groups that contribute substantially to global biogeochemical cycles. Since most subsurface microorganisms continue to evade cultivation, possibly due to very slow growth, we obtained and analyzed genomic information from a representative of one of the most widespread and abundant, yet uncharacterized bacterial groups of the marine subsurface. We describe several key features that may contribute to their widespread distribution, such as respiratory flexibility and the potential to use oxidized sulfur compounds, which are abundant in marine environments, as electron acceptors. Together, these data provide important information that can be used to assist in designing enrichment strategies or other postgenomic studies, while also improving our understanding of the diversity and distribution of dsrAB genes, which are widely used functional marker genes for sulfur-cycling microbes.


Assuntos
Chloroflexi/genética , Chloroflexi/metabolismo , Genoma Bacteriano , Sulfito de Hidrogênio Redutase/genética , Redes e Vias Metabólicas/genética , Sulfitos/metabolismo , Chloroflexi/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dinamarca , Sedimentos Geológicos/microbiologia , Hidrocarbonetos Aromáticos/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Environ Sci Technol ; 49(10): 6018-28, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25909816

RESUMO

Halogenated homo- and heterocyclic aromatics including disinfectants, pesticides and pharmaceuticals raise concern as persistent and toxic contaminants with often unknown fate. Remediation strategies and natural attenuation in anaerobic environments often build on microbial reductive dehalogenation. Here we describe the transformation of halogenated anilines, benzonitriles, phenols, methoxylated, or hydroxylated benzoic acids, pyridines, thiophenes, furoic acids, and benzenes by Dehalococcoides mccartyi strain CBDB1 and environmental fate modeling of the dehalogenation pathways. The compounds were chosen based on structural considerations to investigate the influence of functional groups present in a multitude of commercially used halogenated aromatics. Experimentally obtained growth yields were 0.1 to 5 × 10(14) cells mol(-1) of halogen released (corresponding to 0.3-15.3 g protein mol(-1) halogen), and specific enzyme activities ranged from 4.5 to 87.4 nkat mg(-1) protein. Chlorinated electron-poor pyridines were not dechlorinated in contrast to electron-rich thiophenes. Three different partial charge models demonstrated that the regioselective removal of halogens is governed by the least negative partial charge of the halogen. Microbial reaction pathways combined with computational chemistry and pertinent literature findings on Co(I) chemistry suggest that halide expulsion during reductive dehalogenation is initiated through single electron transfer from B12Co(I) to the apical halogen site.


Assuntos
Biodegradação Ambiental , Chloroflexi/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Anaerobiose , Elétrons
11.
Environ Sci Technol ; 46(16): 8960-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22800291

RESUMO

Brominated aromatics are used in many different applications but occur also naturally. Here, we demonstrate organohalide respiration and growth of Dehalococcoides mccartyi strain CBDB1 with 1,2,4-tribromobenzene, all three dibrominated benzene congeners and monobromobenzene. All bromobenzenes were fully dehalogenated to benzene. Growth yields were between 1.8 × 10(14) and 2.8 × 10(14) cells per mol of bromide released. Furthermore, a newly designed high-throughput methyl viologen-based photometric microtiter plate assay was established to determine the activity of the reductive dehalogenases in resting cell assays of strain CBDB1 with brominated aromatics as electron acceptors. Activities of 2.8-13.2 nkat per mg total cell protein (0.16-0.8 units per mg total cell protein) were calculated after cultivation of strain CBDB1 on 1,2,4-tribromobenzene. Mass spectrometric analyses and activity assays with whole cell extracts of strain CBDB1 gave strong evidence that four to six reductive dehalogenases were involved in the dehalogenation of all tested brominated benzenes, including the reductive dehalogenases CbdbA80 and CbrA.


Assuntos
Benzeno/metabolismo , Bromo/metabolismo , Chloroflexi/crescimento & desenvolvimento , Chloroflexi/metabolismo , Cromatografia Líquida , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA