Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
CBE Life Sci Educ ; 21(2): ar22, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324271

RESUMO

Science, technology, engineering, and mathematics (STEM) career barriers persist for individuals from marginalized communities due to financial and educational inequality, unconscious bias, and other disadvantaging factors. To evaluate differences in plans and interests between historically underrepresented (UR) and well-represented (WR) groups, we surveyed more than 3000 undergraduates enrolled in chemistry courses. Survey responses showed all groups arrived on campus with similar interests in learning more about science research. Over the 4 years of college, WR students maintained their interest levels, but UR students did not, creating a widening gap between the groups. Without intervention, UR students participated in lab research at lower rates than their WR peers. A case study pilot program, Biosciences Collaborative for Research Engagement (BioCoRE), encouraged STEM research exploration by undergraduates from marginalized communities. BioCoRE provided mentoring and programming that increased community cohesion and cultivated students' intrinsic scientific mindsets. Our data showed that there was no statistical significant difference between BioCoRE WR and UR students when surveyed about plans for a medical profession, graduate school, and laboratory scientific research. In addition, BioCoRE participants reported higher levels of confidence in conducting research than non-BioCoRE Scholars. We now have the highest annual number of UR students moving into PhD programs in our institution's history.


Assuntos
Grupos Minoritários , Estudantes , Engenharia/educação , Humanos , Grupos Minoritários/educação , Tecnologia/educação , Universidades
2.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33529173

RESUMO

Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by approximately 30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of the human SUR2[R1154Q] mutation into the mouse ABCC9 gene. Along with minimal CS disease features, R1154Q cardiomyocytes and vascular smooth muscle showed much lower KATP current density and pinacidil activation than WT cells. Almost complete loss of SUR2-dependent protein and KATP in homozygous R1154Q ventricles revealed underlying diazoxide-sensitive SUR1-dependent KATP channel activity. Surprisingly, sequencing of SUR2 cDNA revealed 2 distinct transcripts, one encoding full-length SUR2 protein; and the other with an in-frame deletion of 93 bases (corresponding to 31 amino acids encoded by exon 28) that was present in approximately 40% and approximately 90% of transcripts from hetero- and homozygous R1154Q tissues, respectively. Recombinant expression of SUR2A protein lacking exon 28 resulted in nonfunctional channels. CS tissue from SUR2[R1154Q] mice and human induced pluripotent stem cell-derived (hiPSC-derived) cardiomyocytes showed only full-length SUR2 transcripts, although further studies will be required in order to fully test whether SUR2[R1154Q] or other CS mutations might result in aberrant splicing and variable expressivity of disease features in human CS.


Assuntos
Cardiomegalia , Hipertricose , Osteocondrodisplasias , Receptores de Sulfonilureias/genética , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Feminino , Humanos , Hipertricose/genética , Hipertricose/metabolismo , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Miócitos Cardíacos , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo
3.
J Biol Chem ; 292(42): 17387-17398, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28842488

RESUMO

Cantu syndrome (CS) is a condition characterized by a range of anatomical defects, including cardiomegaly, hyperflexibility of the joints, hypertrichosis, and craniofacial dysmorphology. CS is associated with multiple missense mutations in the genes encoding the regulatory sulfonylurea receptor 2 (SUR2) subunits of the ATP-sensitive K+ (KATP) channel as well as two mutations (V65M and C176S) in the Kir6.1 (KCNJ8) subunit. Previous analysis of leucine and alanine substitutions at the Val-65-equivalent site (Val-64) in Kir6.2 indicated no major effects on channel function. In this study, we characterized the effects of both valine-to-methionine and valine-to-leucine substitutions at this position in both Kir6.1 and Kir6.2 using ion flux and patch clamp techniques. We report that methionine substitution, but not leucine substitution, results in increased open state stability and hence significantly reduced ATP sensitivity and a marked increase of channel activity in the intact cell irrespective of the identity of the coassembled SUR subunit. Sulfonylurea inhibitors, such as glibenclamide, are potential therapies for CS. However, as a consequence of the increased open state stability, both Kir6.1(V65M) and Kir6.2(V64M) mutations essentially abolish high-affinity sensitivity to the KATP blocker glibenclamide in both intact cells and excised patches. This raises the possibility that, at least for some CS mutations, sulfonylurea therapy may not prove to be successful and highlights the need for detailed pharmacogenomic analyses of CS mutations.


Assuntos
Cardiomegalia/metabolismo , Hipertricose/metabolismo , Canais KATP/metabolismo , Mutação de Sentido Incorreto , Osteocondrodisplasias/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Cardiomegalia/genética , Chlorocebus aethiops , Glibureto/farmacologia , Humanos , Hipertricose/genética , Canais KATP/química , Canais KATP/genética , Camundongos , Osteocondrodisplasias/genética , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Estabilidade Proteica/efeitos dos fármacos , Ratos
4.
J Gen Physiol ; 146(6): 527-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26621776

RESUMO

Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium ((86)Rb(+)) efflux assays, we show that K(ATP) channels formed with P429L, A475V, or C1039Y mutants enhance K(ATP) activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive K(ATP) channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation.


Assuntos
Cardiomegalia/genética , Hipertricose/genética , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Receptores de Sulfonilureias/metabolismo , Potenciais de Ação , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Cardiomegalia/metabolismo , Chlorocebus aethiops , Humanos , Hipertricose/metabolismo , Camundongos , Dados de Sequência Molecular , Osteocondrodisplasias/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/química , Receptores de Sulfonilureias/genética
5.
Hum Mutat ; 35(7): 809-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24700710

RESUMO

ATP-sensitive potassium (KATP ) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome (CS), a distinct multiorgan disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of CS (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether coexpressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in CS, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from a Kir6-independent SUR2 function.


Assuntos
Cardiomegalia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hipertricose/genética , Canais KATP/genética , Mutação , Osteocondrodisplasias/genética , Adolescente , Cardiomegalia/diagnóstico , Análise Mutacional de DNA , Fácies , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Humanos , Hipertricose/diagnóstico , Canais KATP/química , Canais KATP/metabolismo , Masculino , Potenciais da Membrana , Modelos Moleculares , Mutação de Sentido Incorreto , Osteocondrodisplasias/diagnóstico , Fenótipo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA