Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Sci Technol ; 57(4): 1721-1730, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36653019

RESUMO

There was no regulatory requirement for ecotoxicological testing of human pharmaceuticals authorized before 2006, and many of these have little or no data available to assess their environmental risk. Motivated by animal welfare considerations, we developed a decision tree to minimize in vivo fish testing for such legacy active pharmaceutical ingredients (APIs). The minimum no observed effect concentration (NOECmin, the lowest NOEC from chronic Daphnia and algal toxicity studies), the theoretical therapeutic water concentration (TWC, calculated using the fish plasma model), and the predicted environmental concentration (PEC) were used to derive API risk quotients (PEC/NOECmin and PEC/TWC). Based on a verification data set of 96 APIs, we show that by setting a threshold value of 0.001 for both risk quotients, the need for in vivo fish testing could potentially be reduced by around 35% without lowering the level of environmental protection. Hence, for most APIs, applying an assessment factor of 1000 (equivalent to the threshold of 0.001) to NOECmin substituted reliably for NOECfish, and TWC acted as an effective safety net for the others. In silico and in vitro data and mammalian toxicity data may further support the final decision on the need for fish testing.


Assuntos
Peixes , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Daphnia , Ecotoxicologia , Monitoramento Ambiental , Medição de Risco , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165193

RESUMO

Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.


Assuntos
Rios/química , Poluição Química da Água/análise , Poluição Química da Água/prevenção & controle , Ecossistema , Exposição Ambiental , Monitoramento Ambiental , Humanos , Preparações Farmacêuticas , Águas Residuárias/análise , Águas Residuárias/química , Água/análise , Água/química , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 41(3): 601-613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33595135

RESUMO

The toxicity of 17 active pharmaceutical ingredients (APIs) was investigated using standardized acute and chronic tests with Daphnia magna and 2 algae species. Chronic toxicity was generally greater for Daphnia than for algae. Compilation of additional data resulted in 100 APIs for which the acute-to-chronic ratio (ACR) was determined for Daphnia. The frequency of high ACRs (~20% with ACRs > 100) indicates that specific receptor-mediated toxicity toward D. magna is rather common among APIs. The 11 APIs with ACRs > 1000 included lipid-modifying agents, immunosuppressants, antibiotics, antineoplastics, antiobesics, antivirals, and antihistamines. There was no consistent association between ACR and chronic toxicity, ionization status, or lipophilicity. High ACRs were not exclusively associated with the presence of orthologs of the pharmacological target in Daphnia. Statins, acetylcholinesterase inhibitors, and antihistamines are discussed in more detail regarding the link between targets and toxic mode of action. For acetylcholinesterase inhibitors, receptor-mediated toxicity was already apparent after acute exposure, whereas the high ACR and chronic toxicity of some antihistamines probably related to interaction with a secondary rather than the primary pharmacological target. Acute or modeled chronic toxicity estimates have often been used for prioritizing pharmaceuticals. This may be seriously misleading because chronic effects are currently not predictable for APIs with specific receptor-mediated toxicity. However, it is exactly these APIs that are the most relevant in terms of environmental risks. Environ Toxicol Chem 2022;41:601-613. © 2021 SETAC.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Inibidores da Colinesterase/farmacologia , Daphnia , Preparações Farmacêuticas , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade
4.
Sci Total Environ ; 808: 151931, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34863752

RESUMO

Sunscreens containing UV filters, such as octocrylene (OCR) and butyl-methoxydibenzoylmethane (BMDBM), have been increasingly used to protect human skin against UV radiation. Both substances have been detected in monitoring studies in the freshwater and marine environment, and there has been concern about potential effects on aquatic organisms. In the present work, the environmental fate and occurrence, bioaccumulation and ecotoxicity including endocrine effects of OCR and BMDBM are reviewed focusing on the aquatic environment. The two UV filters have low water solubilities and a high sorption potential. The available data indicate that OCR is poorly biodegradable. BMDBM lacks anaerobic and inherent biodegradability. However, it was biodegraded to variable degrees in simulation studies. Measured concentrations in the freshwater and marine environment were found to vary considerably between sites, depending on the extent of recreational activities or wastewater discharges. While the bioconcentration factor of OCR in fish is below the threshold value for bioaccumulation according to EU REACH, the available data for BMDBM do not allow a definitive conclusion on its bioaccumulation potential. Analysis of the aquatic toxicity data showed that data quality was often limited, e.g. in the case of effect concentrations substantially exceeding maximum achievable dissolved concentrations. Up to their limit of water solubility, OCR and BMDBM showed no toxicity to microorganisms, algae, and corals, and no acute toxicity to daphnids and fish. In chronic daphnid tests, OCR was highly toxic, whereas BMDBM lacked toxicity. Reliable water-sediment toxicity tests are required to further evaluate possible effects on benthic invertebrates. The available data do not provide evidence for endocrine effects of the two UV filters on fish. In order to assess potential environmental risks caused by OCR and BMDBM, a validated exposure model for estimating direct emission of UV filters into the aquatic environment and data from systematic, longer-term monitoring studies are needed.


Assuntos
Raios Ultravioleta , Poluentes Químicos da Água , Animais , Peixes , Água Doce , Protetores Solares/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Sci Data ; 8(1): 136, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021166

RESUMO

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.


Assuntos
Biodiversidade , Oligoquetos/classificação , Animais , Biomassa
6.
Environ Toxicol Chem ; 38(11): 2509-2519, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343770

RESUMO

The fish plasma model (FPM) predicts the fish blood plasma concentration of a pharmaceutical from the water concentration to which the fish is exposed and compares it with the human therapeutic plasma concentration (Hther PC) with the postulate that no adverse toxic effects occur below the Hther PC. The present study provides several lines of evidence supporting the FPM for the beta-adrenergic agonist salbutamol, a small cationic molecule at ambient pH. Salbutamol exhibited very low acute toxicity to early and adult life stages of fish. Biomass reduction in fish early life stages was the most sensitive apical endpoint, with no-observed-effect concentrations (NOECs) in the low mg/L range after continuous exposure for up to 120 d. Given that predicted and measured environmental concentrations are at least 1000-fold lower, the risk of salbutamol in freshwater is deemed very low. Increase in heart beat rate and decrease in total triglyceride content in fish also occurred at the low mg/L range and resembled effects known from humans. This finding supports the FPM assumption of conserved targets in fish with similar functionality. Plasma concentrations measured in adult and juvenile fish exposed to water concentrations at approximately the NOECs exceeded Hther PC and even approached plasma concentrations toxic to humans. This result confirms for salbutamol the FPM hypothesis that no adverse (i.e., population-relevant) toxic effects occur in fish below the Hther PC. Environ Toxicol Chem 2019;38:2509-2519. © 2019 SETAC.


Assuntos
Agonistas Adrenérgicos beta/sangue , Albuterol/sangue , Monitoramento Ambiental , Peixes/sangue , Modelos Biológicos , Agonistas Adrenérgicos beta/química , Albuterol/química , Animais , Biomassa , Frequência Cardíaca
7.
Integr Environ Assess Manag ; 15(3): 470-481, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30638305

RESUMO

The persistence assessment under the European Union regulation Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) relies on compartment-specific degradation half-lives derived from laboratory simulation studies with surface water, aquatic sediment, or soil. Although these data are given priority, they are not available for most of the compounds. Therefore, according to the Integrated Assessment and Testing Strategy (ITS) for persistence assessment, results from ready biodegradability tests (RBTs) are used within a persistence screening to decide whether a substance is considered as "not persistent" or "potentially persistent." However, ready biodegradability is currently tested only in water. Consequently, there is a lack of approaches that include the soil and sediment compartments for persistence assessment at the screening level. In previous studies, compartment-specific screening tools for water-sediment (Water-Sediment Screening Tool [WSST]) and soil (Soil Screening Tool [SST]) were developed based on the existing test guideline Organisation for Economic Development and Co-operation (OECD TG 301C [MITI (Ministry of International Trade and Industry, Japan) test]). The test systems MITI, WSST, and SST were successfully applied to determine sound and reliable biodegradation data for 15 test compounds. In the present study, these results are used within the scope of a new alternative persistence screening approach, the Compartment-Specific Persistence Screening (CSPS). Compared to the persistence screening under REACH, the CSPS is a more conservative approach that provides additional reasonable results, particularly for compounds that sorb to sediment and soil, and for which the current standard persistence screening might be insufficient. Thus, the CSPS can be used to identify potentially persistent and nonpersistent compounds in the regulatory context by a comprehensive assessment that includes water, soil, and sediment. Moreover, experimentally determined half-lives from the compartment-specific screening tools can be used as input for multimedia models that estimate, for example, overall persistence (Pov ). The application of fixed half-life factors to extrapolate from water to soil and sediment, which is here demonstrated to be inappropriate, can thereby be avoided. Integr Environ Assess Manag 2019;00:000-000. © 2019 SETAC.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Monitoramento Ambiental/instrumentação , União Europeia , Sedimentos Geológicos/análise
8.
Aquat Toxicol ; 206: 91-101, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30468978

RESUMO

The interaction of pollutants and pathogens may result in altered and often enhanced effects of the chemical, the biotic stressor or both. These interaction effects cannot be reliably predicted from the toxicity of the chemical or the virulence of the pathogen alone. While standardized detection methods for immunotoxic effects of chemicals exist with regard to human health, employing host-resistance assays with vertebrates, such standardized test systems are completely lacking for invertebrate species and no guidance is available on how immunotoxic effects of a chemical in invertebrates could be definitively identified. In the present study, we investigated the impact of the immunosuppressive pharmaceutical cyclosporine A (CsA) on the invertebrate host-pathogen system Daphnia magna - Pasteuria ramosa. CsA is a calcineurin-inhibitor in vertebrates and also known to have antibiotic as well as antifungal properties. Juvenile D. magna were exposed to CsA for 21 days with or without additional pathogen challenge during the first 72 h of exposure. Long-term survival of the host D. magna was synergistically impacted by co-exposure to the chemical and the pathogen, expressed e.g. in significantly enhanced hazard ratios. Additionally, enhanced virulence of the pathogen upon chemical co-exposure was expressed in an increased proportion of infected hosts and an increased speed of Pasteuria-induced host sterilization. In contrast, effects on reproduction were additive in Pasteuria-challenged, but finally non-infected D. magna. The enhancing effects of CsA occurred at and below 3 µg/L, which was in the absence of the pathogen the lowest concentration significantly impacting the standard toxicity endpoint 'reproduction' in D. magna. Hence, the present study provides evidence that a pharmaceutical intended to suppress the human immune system can also suppress disease resistance of an aquatic invertebrate organism at otherwise non-toxic concentrations. Plausible ways of direct interactions of CsA with the host's immune system are discussed, e.g. interference with phagocytosis or Toll-like receptors. Experimental verification of such a direct interference would be warranted to support the strong evidence for immunotoxic activity of CsA in invertebrates. While it remains open whether CsA concentrations in the environment are high enough to trigger adverse effects in environmental organisms, our findings highlight the need to consider immunotoxicity in an environmental risk assessment, and to develop suitable standardized methods for this purpose.


Assuntos
Ciclosporina/toxicidade , Daphnia/efeitos dos fármacos , Daphnia/microbiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Pasteuria/efeitos dos fármacos , Pasteuria/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Reprodução/efeitos dos fármacos
9.
Water Res ; 140: 56-66, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684702

RESUMO

The aquatic environment is continually exposed to a complex mixture of chemicals, whereby effluents of wastewater treatment plants (WWTPs) are one key source. The aim of the present study was to investigate whether environmental risk assessments (ERAs) addressing individual substances are sufficiently protective for such coincidental mixtures. Based on a literature review of chemicals reported to occur in municipal WWTP effluents and mode-of-action considerations, four different types of mixtures were composed containing human pharmaceuticals, pesticides, and chemicals regulated under REACH. The experimentally determined chronic aquatic toxicity of these mixtures towards primary producers and the invertebrate Daphnia magna could be adequately predicted by the concept of concentration addition, with up to 5-fold overestimation and less than 3-fold underestimation of mixture toxicity. Effluents of a municipal WWTP had no impact on the predictability of mixture toxicity and showed no adverse effects on the test organisms. Predictive ERAs for the individual mixture components based on here derived predicted no effect concentrations (PNECs) and median measured concentrations in WWTP effluents (MCeff) indicated no unacceptable risk for any of the individual chemicals, while MCeff/PNEC summation indicated a possible risk for multi-component mixtures. However, a refined mixture assessment based on the sum of toxic units at species level indicated no unacceptable risks, and allowed for a safety margin of more than factor 10, not taking into account any dilution of WWTP effluents by surface waters. Individual substances, namely climbazole, fenofibric acid and fluoxetine, were dominating the risks of the investigated mixtures, while added risk due to the mixture was found to be low with the risk quotient being increased by less than factor 2. Yet, uncertainty remains regarding chronic mixture toxicity in fish, which was not included in the present study. The number and identity of substances composing environmental mixtures such as WWTP effluents is typically unknown. Therefore, a mixture assessment factor is discussed as an option for a prospective ERA of mixtures of unknown composition.


Assuntos
Testes de Toxicidade Crônica/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Araceae/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Ecotoxicologia/métodos , Feminino , Fenofibrato/análogos & derivados , Fenofibrato/toxicidade , Fluoxetina/toxicidade , Imidazóis/toxicidade , Masculino , Praguicidas/análise , Praguicidas/toxicidade , Preparações Farmacêuticas/análise , Medição de Risco/métodos , Eliminação de Resíduos Líquidos
10.
Ecotoxicology ; 27(7): 936-944, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29500666

RESUMO

Products used for plant protection or as biocides often contain more than one active substance together with numerous formulation additives. The environmental risk assessment for such commercial mixtures applies as default the concept of concentration addition. There is remaining regulatory concern, however, that underestimation of risks can occur if components in the mixture interact synergistically, i.e., elicit effects greater than those predicted by concentration addition. While cases of true synergism appear to be rare, the combination of substances targeting different steps in the same biosynthesis pathway was pointed out as one potential case of synergistic interaction although mechanistic explanations are lacking. The present study aimed to verify this hypothesis using the green alga Raphidocelis subcapitata as the regulatory standard test organism for which such synergism had been indicated earlier. Algal growth inhibition tests were conducted with mixtures of ergosterol biosynthesis inhibitors (tebuconazole, fenpropidin, and fenpropimorph). The fungicides were first tested individually to derive reliable data for a mixture toxicity prediction. The here determined toxicity estimates for two of the fungicides were considerably lower than the endpoints in the regulatory dossiers, which had been used for earlier mixture toxicity predictions. Experimentally observed toxicity estimates for the mixtures deviated <2.6-fold from the predicted values. Hence, the hypothesis of synergistic interaction between fungicides targeting different enzymes in the ergosterol biosynthesis was clearly not confirmed for the green alga R. subcapitata. Overall, the present study demonstrates the importance of reliable and correct input data for mixture toxicity predictions in order to avoid erroneous conclusions on non-additive (synergistic) interactions.


Assuntos
Clorófitas/efeitos dos fármacos , Ergosterol/biossíntese , Fungicidas Industriais/toxicidade , Poluentes Químicos da Água/toxicidade , Sinergismo Farmacológico , Testes de Toxicidade
11.
Environ Sci Eur ; 30(1): 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29392106

RESUMO

BACKGROUND: Biocidal products are mixtures of one or more active substances (a.s.) and a broad range of formulation additives. There is regulatory guidance currently under development that will specify how the combined effects of the a.s. and any relevant formulation additives shall be considered in the environmental risk assessment of biocidal products. The default option is a component-based approach (CBA) by which the toxicity of the product is predicted from the toxicity of 'relevant' components using concentration addition. Hence, unequivocal and practicable criteria are required for identifying the 'relevant' components to ensure protectiveness of the CBA, while avoiding unnecessary workload resulting from including by default components that do not significantly contribute to the product toxicity. The present study evaluated a set of different criteria for identifying 'relevant' components using confidential information on the composition of 21 wood preservative products. Theoretical approaches were complemented by experimentally testing the aquatic toxicity of seven selected products. RESULTS: For three of the seven tested products, the toxicity was underestimated for the most sensitive endpoint (green algae) by more than factor 2 if only the a.s. were considered in the CBA. This illustrated the necessity of including at least some additives along with the a.s. Considering additives that were deemed 'relevant' by the tentatively established criteria reduced the underestimation of toxicity for two of the three products. A lack of data for one specific additive was identified as the most likely reason for the remaining toxicity underestimation of the third product. In three other products, toxicity was overestimated by more than factor 2, while prediction and observation fitted well for the seventh product. Considering all additives in the prediction increased only the degree of overestimation. CONCLUSIONS: Supported by theoretical calculations and experimental verifications, the present study developed criteria for the identification of CBA-relevant components in a biocidal product. These criteria are based on existing criteria stated in the regulation for classification, labelling and packaging of substances. The CBA was found sufficiently protective and reliable for the tested products when applying the here recommended criteria. The lack of available aquatic toxicity data for some of the identified relevant components was the main reason for underestimation of product toxicity.

12.
Environ Toxicol Chem ; 37(3): 690-702, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29068498

RESUMO

A framework is presented that is intended to facilitate the evaluation of potential aquatic ecological risks resulting from discharges of down-the-drain chemicals. A scenario is presented using representatives of many of the types of chemicals that are treated domestically. Predicted environmental chemical concentrations are based on reported loading rates and routine removal rates for 3 types of treatment: trickling filter, activated sludge secondary treatment, and activated sludge plus advanced oxidation process as well as instream effluent dilution. In tier I, predicted effluent concentrations were compared with the lowest predicted-no-effect concentration (PNEC) obtained from the literature using safety factors as needed. A cumulative risk characterization ratio (cumRCR) < 1.0 indicates that risk is unlikely and no further action is needed. Otherwise, a tier 2 assessment is used, in which PNECs are based on trophic level. If tier 2 indicates a possible risk, then a retrospective assessment is recommended. In tier 1, the cumRCR was > 1.0 for all 3 treatment types in our scenario, even though no chemical exceeded a hazard quotient of 1.0 in activated sludge or advanced oxidation process. In tier 2, activated sludge yielded a lower cumRCR than trickling filter because of higher removal rates, and the cumRCR in the advanced oxidation process was << 1.0. Based on the maximum cumulative risk ratio (MCR), more than one-third of the predicted risk was accounted for by one chemical, and at least 90% was accounted for by 3 chemicals, indicating that few chemicals influenced the mixture risk in our scenario. We show how a retrospective assessment can test whether certain chemicals hypothesized as potential drivers in the prospective assessment could have, or are having, deleterious effects on aquatic life. Environ Toxicol Chem 2018;37:690-702. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Medição de Risco/métodos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Purificação da Água , Árvores de Decisões , Ecotoxicologia , Monitoramento Ambiental , Estudos Prospectivos , Estudos Retrospectivos , Esgotos/química , Poluentes Químicos da Água/análise
13.
Aquat Toxicol ; 186: 171-179, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28284153

RESUMO

Advanced wastewater treatment technologies are generally known to be an effective tool for reducing micropollutant discharge into the aquatic environment. Nevertheless, some processes such as ozonation result in stable transformation products with often unknown toxicity. In the present study, whole effluents originating from nine different steps of advanced treatment combinations were compared for their aquatic toxicity. Assessed endpoints were survival, growth and reproduction of Lumbriculus variegatus, Daphnia magna and Lemna minor chronically exposed in on-site flow-through tests based on standard guidelines. The treatment combinations were activated sludge treatment followed by ozonation with subsequent filtration by granular activated carbon or biofilters and membrane bioreactor treatment of raw wastewater followed by ozonation. Additionally, the impact of treated wastewater on the immune response of invertebrates was investigated by challenging D. magna with a bacterial endoparasite. Conventionally treated wastewater reduced reproduction of L. variegatus by up to 46%, but did not affect D. magna and L. minor with regard to survival, growth, reproduction and parasite resistance. Instead, parasite susceptibility was significantly reduced in D. magna exposed to conventionally treated as well as ozonated wastewater in comparison to D. magna exposed to the medium control. None of the three test organisms provided clear evidence that wastewater ozonation leads to increased aquatic toxicity. Rather than to the presence of toxic transformation products, the affected performance of L. variegatus could be linked to elevated concentrations of ammonium and nitrite that likely resulted from treatment failures.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/fisiologia , Parasitos/fisiologia , Águas Residuárias , Purificação da Água/métodos , Compostos de Amônio/análise , Animais , Organismos Aquáticos/microbiologia , Araceae/crescimento & desenvolvimento , Araceae/fisiologia , Biomassa , Daphnia/crescimento & desenvolvimento , Daphnia/microbiologia , Daphnia/fisiologia , Feminino , Nitratos/análise , Nitritos/análise , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/microbiologia , Oligoquetos/fisiologia , Pasteuria/fisiologia , Reprodução , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
14.
Environ Sci Technol ; 51(1): 308-319, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27936620

RESUMO

A multidisciplinary concept has been developed to compare advanced wastewater treatment processes for their efficacy of eliminating micropollutants and pathogens. The concept is based on (i) the removal/formation of selected indicator substances and their transformation products (TPs), (ii) the assessment of ecotoxicity via in vitro tests, and (iii) the removal of pathogens and antibiotic resistant bacteria. It includes substances passing biological wastewater treatment plants regulated or proposed to be regulated in the European Water Framework Directive, TPs formed in biological processes or during ozonation, agonistic/antagonistic endocrine activities, mutagenic/genotoxic activities, cytotoxic activities, further activities like neurotoxicity as well as antibiotics resistance genes, and taxonomic gene markers for pathogens. At a pilot plant, ozonation of conventionally treated wastewater resulted in the removal of micropollutants and pathogens and the reduction of estrogenic effects, whereas the in vitro mutagenicity increased. Subsequent post-treatment of the ozonated water by granular activated carbon (GAC) significantly reduced the mutagenic effects as well as the concentrations of remaining micropollutants, whereas this was not the case for biofiltration. The results demonstrate the suitability of the evaluation concept to assess processes of advanced wastewater treatment including ozonation and GAC by considering chemical, ecotoxicological, and microbiological parameters.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias/química , Carvão Vegetal/química , Ecotoxicologia , Ozônio/química , Poluentes Químicos da Água
15.
Environ Sci Eur ; 28(1): 2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27752437

RESUMO

Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the ingestion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplastics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be reduced in a broad and global effort regardless of a proof of an environmental risk.

16.
Sci Total Environ ; 562: 312-326, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27100012

RESUMO

Biosolids have well-documented crop and soil benefits similar to other sources of organic amendment, but there is environmental concern due to biosolids-associated pollutants. The present study investigated two field sites that had received biosolids at commercial-scale rates in parallel to associated field sections which were managed similarly but without receiving biosolids (controls). The investigated endpoints were abundance and diversity of soil organisms (nematodes, enchytraeids and earthworms) and soil fauna feeding activity as measured by the bait lamina assay. Repeated sampling of one of the field sites following the only biosolids application demonstrated an enrichment effect typical for organic amendments, which was mostly exhausted after 44months. After an initial suppression, the proportion of free-living plant-parasitic nematodes tended to increase in the biosolids-amended soil over time. Yet, none of the endpoints at this site indicated significant negative effects resulting from the biosolids until 44months post application. In contrast to the repeatedly tilled first field site, the second one was left fallow after three biosolids applications, and was sampled 96months post last application. It was only at this field site that potential evidence for a long-term impact of biosolids was detected with regard to two endpoints: earthworm abundance and structure of the nematode assemblage. Agricultural management and correlation with abiotic soil parameters explained the observed difference in earthworm abundance. Yet, the development of a highly structured and mature nematode assemblage at the control but not at the biosolids-amended section of this fallow field could not be explained by such correlations nor by soil metal concentrations. Overall, the present study found only weak evidence for negative long-term impacts of biosolids applied at commercial rates on soil fauna. High-level community parameters such as the nematode structure index (SI) appeared more suitable to detect deleterious effects on soil fauna than simple abundance measurements.


Assuntos
Agricultura/métodos , Monitoramento Ambiental , Poluentes do Solo/análise , Eliminação de Resíduos Líquidos/métodos , Animais , Fertilizantes , Oligoquetos
17.
Sci Total Environ ; 544: 1020-30, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26774960

RESUMO

Two new screening-test systems for biodegradation in water-sediment systems (WSST; Water-Sediment Screening Tool) and soil (SST; Soil Screening Tool) were developed in analogy with the water-only test system OECD 301C (MITI-test). The test systems could be applied successfully to determine reproducible experimental mineralization rates and kinetics on the screening-test level for fifteen organic chemicals in water (MITI), water-sediment (WSST) and soil (SST). Substance-specific differences were observed for mineralization compared among the three test systems. Based on mineralization rate and mineralization half-life, the fifteen compounds could be grouped into four biodegradation categories: substances with high mineralization and a half-life <28 days in (1) all three test systems, (2) only in the MITI test and in the WSST, (3) only in the SST, and (4) none of the test systems. The observed differences between the MITI results and the WSST and SST biodegradation rates of the compounds do not reflect their (reversible) sorption into organic matter in terms of experimental K(oc) values and log D values for the relevant pH range. Regarding mineralization kinetics we recommend to determine the lag-phase, mineralization half-life and mineralization rate using a 5-parameter logistic regression for degradation curves with and without lag-phase. Experimental data obtained with the WSST and the SST could be verified by showing good agreement with biodegradation data from databases and literature for the majority of compounds tested. Thus, these new screening-tools for water-sediment and soil are considered suitable to determine sound and reliable quantitative mineralization data including mineralization kinetics in addition to the water-only ready biodegradability tests according to OECD 301.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Compostos Orgânicos/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Meia-Vida , Cinética , Solo/química
18.
Environ Pollut ; 208(Pt B): 512-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26552532

RESUMO

Sewage sludge applied to soil may be a valuable fertiliser but can also introduce poorly degradable and highly adsorptive wastewater-born residues of pharmaceuticals and personal care products (PPCPs) to the soil, posing a potential risk to the receiving environment. Three azole antimycotics (climbazole, ketoconazole and fluconazole), and one quaternary ammonium compound (benzyldimethyldodecylammonium chloride, BDDA) that are frequently detected in municipal sewage sludge and/or treated wastewater were therefore characterised in their toxicity toward terrestrial (Brassica napus) and aquatic (Lemna minor) plants. Fluconazole and climbazole showed the greatest toxicity to B. napus, while toxicity of ketoconazole and BDDA was by one to two orders of magnitude lower. Sludge amendment to soil at an agriculturally realistic rate of 5 t/ha significantly reduced the bioconcentration of BDDA in B. napus shoots compared to tests without sludge amendment, although not significantly reducing phytotoxicity. Ketoconazole, fluconazole and BDDA proved to be very toxic to L. minor with median effective concentrations ranging from 55.7 µg/L to 969 µg/L. In aquatic as well as terrestrial plants, the investigated azoles exhibited growth-retarding symptoms presumably related to an interference with phytohormone synthesis as known for structurally similar fungicides used in agriculture. While all four substances exhibited considerable phytotoxicity, the effective concentrations were at least one order of magnitude higher than concentrations measured in sewage sludge and effluent. Based on preliminary hazard quotients, BDDA and climbazole appeared to be of greater environmental concern than the two pharmaceuticals fluconazole and ketoconazole.


Assuntos
Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Tensoativos/toxicidade , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Agricultura , Antifúngicos/análise , Antifúngicos/toxicidade , Fertilizantes , Fluconazol/análise , Fluconazol/toxicidade , Imidazóis/análise , Imidazóis/toxicidade , Cetoconazol/análise , Cetoconazol/toxicidade , Esgotos/química , Solo/química , Poluentes do Solo/análise , Tensoativos/análise , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
19.
Environ Int ; 85: 189-205, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26411644

RESUMO

Antibiotics play a pivotal role in the management of infectious disease in humans, companion animals, livestock, and aquaculture operations at a global scale. Antibiotics are produced, consumed, and released into the environment at an unprecedented scale causing concern that the presence of antibiotic residues may adversely impact aquatic and terrestrial ecosystems. Here we critically review the ecotoxicological assessment of antibiotics as related to environmental risk assessment (ERA). We initially discuss the need for more specific protection goals based on the ecosystem service concept, and suggest that the ERA of antibiotics, through the application of a mode of toxic action approach, should make more use of ecotoxicological endpoints targeting microorganisms (especially bacteria) and microbial communities. Key ecosystem services provided by microorganisms and associated ecosystem service-providing units (e.g. taxa or functional groups) are identified. Approaches currently available for elucidating ecotoxicological effects on microorganisms are reviewed in detail and we conclude that microbial community-based tests should be used to complement single-species tests to offer more targeted protection of key ecosystem services. Specifically, we propose that ecotoxicological tests should not only assess microbial community function, but also microbial diversity ('species' richness) and antibiotic susceptibility. Promising areas for future basic and applied research of relevance to ERA are highlighted throughout the text. In this regard, the most fundamental knowledge gaps probably relate to our rudimentary understanding of the ecological roles of antibiotics in nature and possible adverse effects of environmental pollution with subinhibitory levels of antibiotics.


Assuntos
Antibacterianos/toxicidade , Ecotoxicologia , Poluentes Ambientais/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Microbiologia do Solo/normas , Microbiologia da Água/normas , Animais , Antibacterianos/análise , Ecologia , Ecossistema , Poluentes Ambientais/análise , Humanos , Medição de Risco
20.
Water Res ; 84: 33-42, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26207878

RESUMO

The reuse of treated wastewater for irrigation and groundwater recharge can counteract water scarcity and reduce pollution of surface waters, but assessing its environmental risk should likewise consider effects associated to the soil. The present study therefore aimed at determining the impact of wastewater irrigation on the habitat quality of water after soil passage and of soil after percolation by applying bioassays and chemical analysis. Lab-scale columns of four different soils encompassing standard European soil and three field soils of varying characteristics and pre-contamination were continuously percolated with treated wastewater to simulate long-term irrigation. Wastewater and its percolates were tested for immobilization of Daphnia magna and growth inhibition of green algae (Pseudokirchneriella subcapitata) and water lentils (Lemna minor). The observed phytotoxicity of the treated wastewater was mostly reduced by soil passage, but in some percolates also increased for green algae. Chemical analysis covering an extensive set of wastewater-born organic pollutants demonstrated that many of them were considerably reduced by soil passage, particularly through peaty soils. Taken together, these results indicated that wastewater-born phytotoxic substances may be removed by soil passage, while existing soil pollutants (e.g. metals) may leach and impair percolate quality. Soils with and without wastewater irrigation were tested for growth of plants (Avena sativa, Brassica napus) and soil bacteria (Arthrobacter globiformis) and reproduction of collembolans (Folsomia candida) and oligochaetes (Enchytraeus crypticus, Eisenia fetida). The habitat quality of the standard and two field soils appeared to be deteriorated by wastewater percolation for at least one organism (enchytraeids, plants or bacteria), while for two pre-contaminated field soils it also was improved (for plants and/or enchytraeids). Wastewater percolation did not seem to raise soil concentrations of classical organic pollutants and priority substances, while a significant retention was found for zinc and several organic micropollutants, particularly in the peaty soils, thus matching these soils' observed higher removal efficiency. Overall, our results demonstrate that benefits of wastewater irrigation can come with the cost of deteriorating soil habitat quality and depend on the respective soil and considered test organism. The approach employed here represents a feasible tool to assess these integrated effects at lab-scale while being predictive for scenarios at field-scale.


Assuntos
Irrigação Agrícola , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Solo/química , Águas Residuárias/análise , Ecologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA