Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37732211

RESUMO

RNA-binding proteins with prion-like domains, such as FUS and TDP-43, condense into functional liquids, which can transform into pathological fibrils that underpin fatal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Here, we define short RNAs (24-48 nucleotides) that prevent FUS fibrillization by promoting liquid phases, and distinct short RNAs that prevent and, remarkably, reverse FUS condensation and fibrillization. These activities require interactions with multiple RNA-binding domains of FUS and are encoded by RNA sequence, length, and structure. Importantly, we define a short RNA that dissolves aberrant cytoplasmic FUS condensates, restores nuclear FUS, and mitigates FUS proteotoxicity in optogenetic models and human motor neurons. Another short RNA dissolves aberrant cytoplasmic TDP-43 condensates, restores nuclear TDP-43, and mitigates TDP-43 proteotoxicity. Since short RNAs can be effectively delivered to the human brain, these oligonucleotides could have therapeutic utility for ALS/FTD and related disorders.

2.
Trends Genet ; 39(5): 381-400, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36935218

RESUMO

Repetitive elements (REs), such as transposable elements (TEs) and satellites, comprise much of the genome. Here, we review how TEs and (peri)centromeric satellite DNA may contribute to aging and neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Alterations in RE expression, retrotransposition, and chromatin microenvironment may shorten lifespan, elicit neurodegeneration, and impair memory and movement. REs may cause these phenotypes via DNA damage, protein sequestration, insertional mutagenesis, and inflammation. We discuss several TE families, including gypsy, HERV-K, and HERV-W, and how TEs interact with various factors, including transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) and the siRNA and piwi-interacting (pi)RNA systems. Studies of TEs in neurodegeneration have focused on Drosophila and, thus, further examination in mammals is needed. We suggest that therapeutic silencing of REs could help mitigate neurodegenerative disorders.


Assuntos
Elementos de DNA Transponíveis , Doenças Neurodegenerativas , Animais , Elementos de DNA Transponíveis/genética , Mutagênese Insercional , RNA Interferente Pequeno/genética , Doenças Neurodegenerativas/genética , Envelhecimento/genética , Mamíferos/genética
3.
Acta Neuropathol ; 145(6): 793-814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37000196

RESUMO

Neuronal TDP-43-positive inclusions are neuropathological hallmark lesions in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Pathogenic missense variants in TARDBP, the gene encoding TDP-43, can cause ALS and cluster in the C-terminal prion-like domain (PrLD), where they modulate the liquid condensation and aggregation properties of the protein. TDP-43-positive inclusions are also found in rimmed vacuole myopathies, including sporadic inclusion body myositis, but myopathy-causing TDP-43 variants have not been reported. Using genome-wide linkage analysis and whole exome sequencing in an extended five-generation family with an autosomal dominant rimmed vacuole myopathy, we identified a conclusively linked frameshift mutation in TDP-43 producing a C-terminally altered PrLD (TDP-43p.Trp385IlefsTer10) (maximum multipoint LOD-score 3.61). Patient-derived muscle biopsies showed TDP-43-positive sarcoplasmic inclusions, accumulation of autophagosomes and transcriptomes with abnormally spliced sarcomeric genes (including TTN and NEB) and increased expression of muscle regeneration genes. In vitro phase separation assays demonstrated that TDP-43Trp385IlefsTer10 does not form liquid-like condensates and readily forms solid-like fibrils indicating increased aggregation propensity compared to wild-type TDP-43. In Drosophila TDP-43p.Trp385IlefsTer10 behaved as a partial loss-of-function allele as it was able to rescue the TBPH (fly ortholog of TARDBP) neurodevelopmental lethal null phenotype while showing strongly reduced toxic gain-of-function properties upon overexpression. Accordingly, TDP-43p.Trp385IlefsTer10 showed reduced toxicity in a primary rat neuron disease model. Together, these genetic, pathological, in vitro and in vivo results demonstrate that TDP-43p.Trp385IlefsTer10 is an aggregation-prone partial loss-of-function variant that causes autosomal dominant vacuolar myopathy but not ALS/FTD. Our study genetically links TDP-43 proteinopathy to myodegeneration, and reveals a tissue-specific role of the PrLD in directing pathology.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Animais , Ratos , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação da Fase de Leitura , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mutação , Humanos
4.
Nat Commun ; 13(1): 3380, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697676

RESUMO

A G4C2 hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of ALS and FTLD (C9-ALS/FTLD) with cytoplasmic TDP-43 inclusions observed in regions of neurodegeneration. The accumulation of repetitive RNAs and dipeptide repeat protein (DPR) are two proposed mechanisms of toxicity in C9-ALS/FTLD and linked to impaired nucleocytoplasmic transport. Nucleocytoplasmic transport is regulated by the phenylalanine-glycine nucleoporins (FG nups) that comprise the nuclear pore complex (NPC) permeability barrier. However, the relationship between FG nups and TDP-43 pathology remains elusive. Our studies show that nuclear depletion and cytoplasmic mislocalization of one FG nup, NUP62, is linked to TDP-43 mislocalization in C9-ALS/FTLD iPSC neurons. Poly-glycine arginine (GR) DPR accumulation initiates the formation of cytoplasmic RNA granules that recruit NUP62 and TDP-43. Cytoplasmic NUP62 and TDP-43 interactions promotes their insolubility and NUP62:TDP-43 inclusions are frequently found in C9orf72 ALS/FTLD as well as sporadic ALS/FTLD postmortem CNS tissue. Our findings indicate NUP62 cytoplasmic mislocalization contributes to TDP-43 proteinopathy in ALS/FTLD.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Glicina/genética , Humanos
5.
Mol Cell ; 82(14): 2588-2603.e9, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35588748

RESUMO

Sex differences are pervasive in human health and disease. One major key to sex-biased differences lies in the sex chromosomes. Although the functions of the X chromosome proteins are well appreciated, how they compare with their Y chromosome homologs remains elusive. Herein, using ensemble and single-molecule techniques, we report that the sex chromosome-encoded RNA helicases DDX3X and DDX3Y are distinct in their propensities for liquid-liquid phase separation (LLPS), dissolution, and translation repression. We demonstrate that the N-terminal intrinsically disordered region of DDX3Y more strongly promotes LLPS than the corresponding region of DDX3X and that the weaker ATPase activity of DDX3Y, compared with DDX3X, contributes to the slower disassembly dynamics of DDX3Y-positive condensates. Interestingly, DDX3Y-dependent LLPS represses mRNA translation and enhances aggregation of FUS more strongly than DDX3X-dependent LLPS. Our study provides a platform for future comparisons of sex chromosome-encoded protein homologs, providing insights into sex differences in RNA metabolism and human disease.


Assuntos
RNA Helicases DEAD-box , RNA Helicases , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Biossíntese de Proteínas , Proteínas/metabolismo , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo
6.
Cell ; 185(8): 1290-1292, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35427496

RESUMO

Neurodegenerative diseases commonly exhibit aggregation of specific proteins that define each disease. Chang et al. (2022) establish that a C-terminal fragment of TMEM106B, a frontotemporal-lobar-degeneration risk factor, unexpectedly forms amyloid fibrils with similar structures in diverse neurodegenerative disorders. These unanticipated TMEM106B(120-254) fibrils may herald etiological shifts for several neurodegenerative diseases.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
7.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380047

RESUMO

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Mutação/genética , Motivos de Nucleotídeos/genética , Transição de Fase , Mutação Puntual/genética , Poli A/metabolismo , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
8.
Neuron ; 102(2): 321-338.e8, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30826182

RESUMO

TDP-43 proteinopathy is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia where cytoplasmic TDP-43 inclusions are observed within degenerating regions of patient postmortem tissue. The mechanism by which TDP-43 aggregates has remained elusive due to technological limitations, which prevent the analysis of specific TDP-43 interactions in live cells. We present an optogenetic approach to reliably induce TDP-43 proteinopathy under spatiotemporal control. We show that the formation of pathologically relevant inclusions is driven by aberrant interactions between low-complexity domains of TDP-43 that are antagonized by RNA binding. Although stress granules are hypothesized to be a conduit for seeding TDP-43 proteinopathy, we demonstrate pathological inclusions outside these RNA-rich structures. Furthermore, we show that aberrant phase transitions of cytoplasmic TDP-43 are neurotoxic and that treatment with oligonucleotides composed of TDP-43 target sequences prevent inclusions and rescue neurotoxicity. Collectively, these studies provide insight into the mechanisms that underlie TDP-43 proteinopathy and present a potential avenue for therapeutic intervention.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Transição de Fase , RNA/metabolismo , Estresse Fisiológico , Proteinopatias TDP-43/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Corpos de Inclusão , Oligonucleotídeos , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA