Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2018: 4650308, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420962

RESUMO

This investigation assessed the biomechanical performance of the metal plate and bone strut technique for fixing recalcitrant nonunions of femur midshaft segmental defects, which has not been systematically done before. A finite element (FE) model was developed and then validated by experiments with the femur in 15 deg of adduction at a subclinical hip force of 1 kN. Then, FE analysis was done with the femur in 15 deg of adduction at a hip force of 3 kN representing about 4 x body weight for a 75 kg person to examine clinically relevant cases, such as an intact femur plus 8 different combinations of a lateral metal plate of fixed length, a medial bone strut of varying length, and varying numbers and locations of screws to secure the plate and strut around a midshaft defect. Using the traditional "high stiffness" femur-implant construct criterion, the repair technique using both a lateral plate and a medial strut fixed with the maximum possible number of screws would be the most desirable since it had the highest stiffness (1948 N/mm); moreover, this produced a peak femur cortical Von Mises stress (92 MPa) which was below the ultimate tensile strength of cortical bone. Conversely, using the more modern "low stiffness" femur-implant construct criterion, the repair technique using only a lateral plate but no medial strut provided the lowest stiffness (606 N/mm), which could potentially permit more in-line interfragmentary motion (i.e., perpendicular to the fracture gap, but in the direction of the femur shaft long axis) to enhance callus formation for secondary-type fracture healing; however, this also generated a peak femur cortical Von Mises stress (171 MPa) which was above the ultimate tensile strength of cortical bone.


Assuntos
Fenômenos Biomecânicos/fisiologia , Placas Ósseas , Osso Cortical/fisiopatologia , Fraturas do Fêmur/fisiopatologia , Fêmur/fisiopatologia , Simulação por Computador , Osso Cortical/cirurgia , Fraturas do Fêmur/cirurgia , Fêmur/cirurgia , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Estresse Mecânico , Resistência à Tração/fisiologia
2.
Proc Inst Mech Eng H ; 226(4): 320-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22611872

RESUMO

Few studies have evaluated the 'bulk' mechanical properties of human longbones and even fewer have compared human tissue to the synthetic longbones increasingly being used by researchers. Distal femur fractures, for example, comprise about 6% of all femur fractures, but the mechanical properties of the distal condyles of intact human and synthetic femurs have not been well quantified in the literature. To this end, the distal portions of a series of 16 human fresh-frozen femurs and six synthetic femurs were prepared identically for mechanical testing. Using a flat metal plate, an axial 'crush' force was applied in-line with the long axis of the femurs. The two femur groups were statistically compared and values correlated to age, size, and bone quality. Results yielded the following: crush stiffness (human, 1545 +/- 728 N/mm; synthetic, 3063 +/- 1243 N/mm; p = 0.002); crush strength (human, 10.3 +/- 3.1 kN; synthetic, 12.9 < or = 1.7 kN; p = 0.074); crush displacement (human, 6.1 +/- 1.8 mm; synthetic, 2.8 +/- 0.3 mm; p = 0.000); and crush energy (human, 34.8 +/- 15.9J; synthetic, 18.1 +/- 5.7J; p = 0.023). For the human femurs, there were poor correlations between mechanical properties versus age, size, and bone quality (R2 < or = 0.18), with the exception of crush strength versus bone mineral density (R2 = 0.33) and T-score (R2 = 0.25). Human femurs failed mostly by condyle 'roll back' buckling (15 of 16 cases) and/or unicondylar or bicondylar fracture (7 of 16 cases), while synthetic femurs all failed by wedging apart of the condyles resulting in either fully or partially displaced condylar fractures (6 of 6 cases). These findings have practical implications on the use of a flat plate load applicator to reproduce real-life clinical failure modes of human femurs and the appropriate use of synthetic femurs. To the authors' knowledge, this is the first study to have done such an assessment on human and synthetic femurs.


Assuntos
Densidade Óssea , Fraturas do Fêmur/fisiopatologia , Fraturas por Compressão/fisiopatologia , Traumatismos do Joelho/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Força Compressiva , Módulo de Elasticidade , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA