Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Microbiol ; 175(1-2): 104133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37683878

RESUMO

Rare earth element (REE) recovery from waste streams, mine tailings or recyclable components using bioleaching is gaining traction due to the shortage and security of REE supply as well as the environmental problems that occur from processing and refining. Four heterotrophic microbial species with known phosphate solubilizing capabilities were evaluated for their ability to leach REE from a high-grade monazite when provided with either galactose, fructose or maltose. Supplying fructose resulted in the greatest amount of REE leached from the ore due to the largest amount of organic acid produced. Gluconic acid was the dominant organic acid identified produced by the cultures, followed by acetic acid. The monazite proved difficult to leach with the different carbon sources, with preferential release of Ce over La, Nd and Pr.


Assuntos
Carbono , Metais Terras Raras , Fosfatos , Frutose
2.
Microorganisms ; 11(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37317305

RESUMO

The adsorption behaviour of micro-organisms during the initial attachment stage of biofilm formation affects subsequent stages. The available area for attachment and the chemophysical properties of a surface affect microbial attachment performance. This study focused on the initial attachment behaviour of Klebsiella aerogenes on monazite by measuring the ratio of planktonic against sessile subpopulations (P:S ratio), and the potential role of extracellular DNA (eDNA). eDNA production, effects of physicochemical properties of the surface, particle size, total available area for attachment, and the initial inoculation size on the attachment behaviour were tested. K. aerogenes attached to monazite immediately after exposure to the ore; however, the P:S ratio significantly (p = 0.05) changed in response to the particle size, available area, and inoculation size. Attachment occurred preferentially on larger-sized (~50 µm) particles, and either decreasing the inoculation size or increasing the available area further promoted attachment. Nevertheless, a portion of the inoculated cells always remained in a planktonic state. K. aerogenes produced lower eDNA in response to the changed surface chemical properties when monazite was replaced by xenotime. Using pure eDNA to cover the monazite surface significantly (p ≤ 0.05) hindered bacterial attachment due to the repulsive interaction between the eDNA layer and bacteria.

3.
Microb Biotechnol ; 16(9): 1790-1802, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37291762

RESUMO

Microbial attachment and biofilm formation is a ubiquitous behaviour of microorganisms and is the most crucial prerequisite of contact bioleaching. Monazite and xenotime are two commercially exploitable minerals containing rare earth elements (REEs). Bioleaching using phosphate solubilizing microorganisms is a green biotechnological approach for the extraction of REEs. In this study, microbial attachment and biofilm formation of Klebsiella aerogenes ATCC 13048 on the surface of these minerals were investigated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). In a batch culture system, K. aerogenes was able to attach and form biofilms on the surface of three phosphate minerals. The microscopy records showed three distinctive stages of biofilm development for K. aerogenes commencing with initial attachment to the surface occurring in the first minutes of microbial inoculation. This was followed by colonization of the surface and formation of a mature biofilm as the second distinguishable stage, with progression to dispersion as the final stage. The biofilm had a thin-layer structure. The colonization and biofilm formation were localized toward physical surface imperfections such as cracks, pits, grooves and dents. In comparison to monazite and xenotime crystals, a higher proportion of the surface of the high-grade monazite ore was covered by biofilm which could be due to its higher surface roughness. No selective attachment or colonization toward specific mineralogy or chemical composition of the minerals was detected. Finally, in contrast to abiotic leaching of control samples, microbial activity resulted in extensive microbial erosion on the high-grade monazite ore.


Assuntos
Biofilmes , Minerais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Fosfatos
4.
Microorganisms ; 10(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35056469

RESUMO

Acidihalobacter aeolianus is an acidophilic, halo-tolerant organism isolated from a marine environment near a hydrothermal vent, an ecosystem whereby levels of salinity and total dissolved salts are constantly fluctuating creating ongoing cellular stresses. In order to survive these continuing changes, the synthesis of compatible solutes-also known as organic osmolytes-is suspected to occur, aiding in minimising the overall impact of environmental instability. Previous studies on A. aeolianus identified genes necessary for the accumulation of proline, betaine and ectoine, which are known to act as compatible solutes in other halophilic species. In this study, the impact of increasing the osmotic stress as well as the toxic ion effect was investigated by subjecting A. aeolianus to concentrations of NaCl and MgSO4 up to 1.27 M. Exposure to high concentrations of Cl- resulted in the increase of ectC expression in log-phase cells with a corresponding accumulation of ectoine at stationary phase. Osmotic stress via MgSO4 exposure did not trigger the same up-regulation of ectC or accumulation of ectoine, indicating the transcriptionally regulated response against osmotic stress was induced by chloride toxicity. These findings have highlighted how the adaptive properties of halo-tolerant organisms in acidic environments are likely to differ and are dependent on the initial stressor.

5.
Res Microbiol ; 169(10): 558-568, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29852218

RESUMO

The unique physiochemical properties exhibited by rare earth elements (REEs) and their increasing application in high-tech industries has created a demand for secure supply lines with established recovery procedures that create minimal environmental damage. Bioleaching experiments conducted on a non-sterile monazite concentrate with a known phosphate solubilising microorganism (PSM) resulted in greater mobilisation of REEs into solution in comparison to experiments conducted on sterile monazite. By combining the native consortia with an introduced PSM, a syntrophic effect between the populations effectively leached a greater amount of REEs than either a single PSM or the indigenous population alone. With sterile monazite, Penicillium sp.CF1 inoculated experiments released a total REE concentration of 12.32 mg L-1 after incubation for 8 days, whereas on non-sterile ore, double the soluble REE concentration was recorded (23.7 mg L-1). Comparable effects were recorded with Enterobacter aerogenes, Pantoea agglomerans and Pseudomonas putida. Alterations in the microbial populations during bioleaching of the monazite ore were determined by diversity profiling and demonstrated noticeable changes in community inhabitants over 14 days. The presence of native Firmicutes on the monazite appears to greatly contribute to the increased leaching recorded when using non-sterile monazite for REE recovery.


Assuntos
Bactérias/metabolismo , Metais Terras Raras/metabolismo , Austrália , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Penicillium/metabolismo
6.
J Biotechnol ; 262: 56-59, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28986293

RESUMO

Successful process development for the bioleaching of mineral ores, particularly the refractory copper sulfide ore chalcopyrite, remains a challenge in regions where freshwater is scarce and source water contains high concentrations of chloride ion. In this study, a pure isolate of Acidihalobacter prosperus strain F5 was characterized for its ability to leach base metals from sulfide ores (pyrite, chalcopyrite and pentlandite) at increasing chloride ion concentrations. F5 successfully released base metals from ores including pyrite and pentlandite at up to 30gL-1 chloride ion and chalcopyrite up to 18gL-1 chloride ion. In order to understand the genetic mechanisms of tolerance to high acid, saline and heavy metal stress the genome of F5 was sequenced and analysed. As well as being the first strain of Ac. prosperus to be isolated from Australia it is also the first complete genome of the Ac. prosperus species to be sequenced. The F5 genome contains genes involved in the biosynthesis of compatible solutes and genes encoding monovalent cation/proton antiporters and heavy metal transporters which could explain its abilities to tolerate high salinity, acidity and heavy metal stress. Genome analysis also confirmed the presence of genes involved in copper tolerance. The study demonstrates the potential biotechnological applicability of Ac. prosperus strain F5 for saline water bioleaching of mineral ores.


Assuntos
Cobre/metabolismo , Ectothiorhodospiraceae/genética , Ectothiorhodospiraceae/metabolismo , Compostos Ferrosos/metabolismo , Águas Salinas/metabolismo , Enxofre/metabolismo , Sequenciamento Completo do Genoma , Ácidos , Ligas/metabolismo , Austrália , Biotecnologia , DNA Bacteriano , Ectothiorhodospiraceae/isolamento & purificação , Microbiologia Ambiental , Genes Bacterianos/genética , Microbiologia Industrial , Ferro/metabolismo , Metais Pesados/metabolismo , Oxirredução , Especificidade da Espécie , Sulfetos/metabolismo
7.
Bioprocess Biosyst Eng ; 40(6): 929-942, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28324179

RESUMO

Many microbial species are capable of solubilising insoluble forms of phosphate and are used in agriculture to improve plant growth. In this study, we apply the use of known phosphate solubilising microbes (PSM) to the release of rare-earth elements (REE) from the rare-earth phosphate mineral, monazite. Two sources of monazite were used, a weathered monazite and mineral sand monazite, both from Western Australia. When incubated with PSM, the REE were preferentially released into the leachate. Penicillum sp. released a total concentration of 12.32 mg L-1 rare-earth elements (Ce, La, Nd, and Pr) from the weathered monazite after 192 h with little release of thorium and iron into solution. However, cultivation on the mineral sands monazite resulted in the preferential release of Fe and Th. Analysis of the leachate detected the production of numerous low-molecular weight organic acids. Gluconic acid was produced by all microorganisms; however, other organic acids produced differed between microbes and the monazite source provided. Abiotic leaching with equivalent combinations of organic acids resulted in the lower release of REE implying that other microbial processes are playing a role in solubilisation of the monazite ore. This study demonstrates that microbial solubilisation of monazite is promising; however, the extent of the reaction is highly dependent on the monazite matrix structure and elemental composition.


Assuntos
Metais Terras Raras/metabolismo , Austrália , Fosfatos
8.
Res Microbiol ; 167(7): 546-54, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27212381

RESUMO

The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water.


Assuntos
Cobre/metabolismo , Microbiologia Ambiental , Compostos Ferrosos/metabolismo , Mineração/métodos , Águas Salinas/metabolismo , Enxofre/metabolismo , Oxirredução
9.
J Biol Chem ; 287(21): 17459-17470, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22442150

RESUMO

IgE binding to its high affinity receptor FcεRI on mast cells and basophils is a key step in the mechanism of allergic disease and a target for therapeutic intervention. Early indications that IgE adopts a bent structure in solution have been confirmed by recent x-ray crystallographic studies of IgEFc, which further showed that the bend, contrary to expectation, is enhanced in the crystal structure of the complex with receptor. To investigate the structure of IgEFc and its conformational changes that accompany receptor binding in solution, we created a Förster resonance energy transfer (FRET) biosensor using biologically encoded fluorescent proteins fused to the N- and C-terminal IgEFc domains (Cε2 and Cε4, respectively) together with the theoretical basis for quantitating its behavior. This revealed not only that the IgEFc exists in a bent conformation in solution but also that the bend is indeed enhanced upon FcεRI binding. No change in the degree of bending was seen upon binding to the B cell receptor for IgE, CD23 (FcεRII), but in contrast, binding of the anti-IgE therapeutic antibody omalizumab decreases the extent of the bend, implying a conformational change that opposes FcεRI engagement. HomoFRET measurements further revealed that the (Cε2)(2) and (Cε4)(2) domain pairs behave as rigid units flanking the conformational change in the Cε3 domains. Finally, modeling of the accessible conformations of the two Fab arms in FcεRI-bound IgE revealed a mutual exclusion not seen in IgG and Fab orientations relative to the membrane that may predispose receptor-bound IgE to cross-linking by allergens.


Assuntos
Alérgenos/análise , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/química , Imunoglobulina E/química , Fragmentos Fc das Imunoglobulinas/química , Receptores de IgE/química , Anticorpos Anti-Idiotípicos/química , Anticorpos Monoclonais Humanizados/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Imunoglobulina E/genética , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Omalizumab , Receptores de IgE/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA