Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3417, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341520

RESUMO

The thorough characterization of chitosan-cleaving enzymes is crucial to unveil structure-function relationships of this promising class of biomolecules for both, enzymatic fingerprinting analyses and to use the enzymes as biotechnological tools to produce tailor-made chitosans for diverse applications. Analyzing polymeric substrates as well as oligomeric products has been established as an effective way to understand the actions of enzymes, but it currently requires separate, rather laborious methods to obtain the full picture. Here, we present ultra high performance size exclusion chromatography coupled to refractive index and mass spectrometry detection (UHPSEC-RI-MS) as a straightforward method for the semi-quantitative analysis of chitosan oligomers of up to ten monomers in length. Additionally, the method allows to determine the average molecular weight of the remaining polymers and its distribution. By sampling live from an ongoing enzymatic reaction, UHPSEC-RI-MS offers the unique opportunity to analyze polymers and oligomers simultaneously-i.e., to monitor the molecular weight reduction of the polymeric substrate over the course of the digestion, while at the same time analyzing the emerging oligomeric products in a semi-quantitative manner. In this way, a single simple analysis yields detailed insights into an enzyme's action on a given substrate.


Assuntos
Quitosana , Quitosana/química , Polímeros , Cromatografia em Gel , Espectrometria de Massas , Biotecnologia
2.
PLoS Biol ; 22(1): e3002459, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236907

RESUMO

Chitin deacetylases (CDAs) emerge as a valuable tool to produce chitosans with a nonrandom distribution of N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) units. We hypothesized before that CDAs tend to bind certain sequences within the substrate matching their subsite preferences for either GlcNAc or GlcN units. Thus, they deacetylate or N-acetylate their substrates at nonrandom positions. To understand the molecular basis of these preferences, we analyzed the binding site of a CDA from Pestalotiopsis sp. (PesCDA) using a detailed activity screening of a site-saturation mutagenesis library. In addition, molecular dynamics simulations were conducted to get an in-depth view of crucial interactions along the binding site. Besides elucidating the function of several amino acids, we were able to show that only 3 residues are responsible for the highly specific binding of PesCDA to oligomeric substrates. The preference to bind a GlcNAc unit at subsite -2 and -1 can mainly be attributed to N75 and H199, respectively. Whereas an exchange of N75 at subsite -2 eliminates enzyme activity, H199 can be substituted with tyrosine to increase the GlcN acceptance at subsite -1. This change in substrate preference not only increases enzyme activity on certain substrates and changes composition of oligomeric products but also significantly changes the pattern of acetylation (PA) when N-acetylating polyglucosamine. Consequently, we could clearly show how subsite preferences influence the PA of chitosans produced with CDAs.


Assuntos
Quitosana , Quitosana/química , Quitosana/metabolismo , Quitina/química , Quitina/metabolismo , Polímeros/metabolismo , Amidoidrolases/genética , Amidoidrolases/química , Amidoidrolases/metabolismo , Acetilação
3.
Appl Microbiol Biotechnol ; 108(1): 171, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265503

RESUMO

Infections caused by Campylobacter spp. are a major cause of severe enteritis worldwide. Multifactorial prevention strategies are necessary to reduce the prevalence of Campylobacter. In particular, antiadhesive strategies with specific inhibitors of early host-pathogen interaction are promising approaches to reduce the bacterial load. An in vitro flow cytometric adhesion assay was established to study the influence of carbohydrates on the adhesion of C. jejuni to Caco-2 cells. Chitosans with a high degree of polymerization and low degree of acetylation were identified as potent antiadhesive compounds, exerting significant reduction of C. jejuni adhesion to Caco-2 cells at non-toxic concentrations. Antiadhesive and also anti-invasive effects were verified by confocal laser scanning microscopy. For target identification, C. jejuni adhesins FlpA and JlpA were expressed in Escherichia coli ArcticExpress, and the influence of chitosan on binding to fibronectin and HSP90α, respectively, was investigated. While no effects on FlpA binding were found, a strong inhibition of JlpA-HSP90α binding was observed. To simulate real-life conditions, chicken meat was inoculated with C. jejuni, treated with antiadhesive chitosan, and the bacterial load was quantified. A strong reduction of C. jejuni load was observed. Atomic force microscopy revealed morphological changes of C. jejuni after 2 h of chitosan treatment, indicating disturbance of the cell wall and sacculi formation by electrostatic interaction of positively charged chitosan with the negatively charged cell surface. In conclusion, our data indicate promising antiadhesive and anti-invasive potential of high molecular weight, strongly de-acetylated chitosans for reducing C. jejuni load in livestock and food production. KEY POINTS: • Antiadhesive effects of chitosan with high DP/low DA against C. jejuni to host cells • Specific targeting of JlpA/Hsp90α interaction by chitosan • Meat treatment with chitosan reduces C. jejuni load.


Assuntos
Campylobacter jejuni , Quitosana , Humanos , Células CACO-2 , Acetilação , Adesinas Bacterianas , Escherichia coli
4.
Biomacromolecules ; 24(3): 1194-1208, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779888

RESUMO

In this study, complex coacervates of the biopolyelectrolytes chitosan and gum arabic were investigated with respect to their composition and charge compensation depending on the pH and salt concentration. Individual polyelectrolyte yields were deduced from thermogravimetric analysis and chitosan quantification via enzymatic hydrolysis/HPLC-ELSD. The polyelectrolyte mass ratio in the complex coacervate is found to remain approximately constant irrespective of the pH, despite the latter's effect on the polyelectrolyte charge ratio. Two regimes are identified, including either chitosan charges in excess (at pH < 6.0) or gum arabic charges in excess (at pH > 6.0). The amount of extrinsic charge compensation in the complex coacervates is discussed in detail. We show for the first time that the doping level, a quantity traditionally used to describe salt-induced changes of the charge compensation in polyelectrolyte complexes, is also suitable for the description of pH-induced extrinsic charge compensation in such systems.


Assuntos
Quitosana , Quitosana/química , Goma Arábica/química , Polieletrólitos , Cloreto de Sódio/química , Concentração de Íons de Hidrogênio
5.
Carbohydr Polym ; 302: 120428, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604090

RESUMO

The rising demand for chitin and chitosan in chemical, agro-food, and healthcare industries is creating a need for rapid and high-throughput analysis. The physicochemical properties of these biopolymers are greatly dependent on the degree of acetylation (DA). Conventional methods for DA determination, such as LC-MS and 1H NMR, are time-consuming when performed on many samples, and therefore efficient methods are needed. Here, high-throughput microplate-based FTIR and FT-Raman methods were compared with their manual counterparts. Partial least squares regression models were based on 30 samples of chitin and chitosan with reference DA values obtained by LC-MS and 1H NMR, and the models were validated on an independent test set of 16 samples. The overall predictive accuracy of the high-throughput methods was at the same level as the manual methods and the well-established LC-MS and 1H NMR methods. Therefore, high-throughput FTIR and FT-Raman DA determination methods have great potential to serve as fast and economical substitutes for traditional methods.


Assuntos
Quitina , Quitosana , Quitina/química , Quitosana/química , Acetilação , Biopolímeros , Espectroscopia de Ressonância Magnética
6.
Carbohydr Polym ; 301(Pt A): 120304, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436867

RESUMO

Chitin is an essential structural component of complex and dynamic fungal cell walls. It may be converted by partial or full deacetylation to yield chitosan. Here, we describe a method to quantify N-acetyl d-glucosamine (GlcNAc, A) and d-glucosamine (GlcN, D) units and, thus, total amount and average fraction of acetylation (x̅ FA) of the chitinous polymers by complete enzyme hydrolysis of the polymers followed by mass spectrometric analyses of the monomers. First, the native polymers were isotopically N-acetylated, then enzymatically hydrolyzed to A and R (2H3N-acetyl-d-glucosamine - former D) monomers. Relative abundances of A and R units were used to calculate x̅ FA, and a double-isotopically labeled internal standard R* ([13C2,2H3] N-acetyl-d-glucosamine) monomer was used to calculate the absolute amounts of GlcNAc and GlcN units present in the fungal samples. The method was validated using known chitosan polymers and is suitable for both purified cell walls and whole mycelia.


Assuntos
Quitina , Quitosana , Quitina/química , Quitosana/química , Polímeros , Acetilglucosamina , Glucosamina/química , Parede Celular
8.
Carbohydr Polym ; 283: 119141, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35153014

RESUMO

A new method for quantitative analysis of chitosan in aqueous solution is introduced, comprising an enzyme-driven cleavage to water-soluble chitooligosaccharides (COS), N-acetylation, separation via UHPLC and detection by use of an evaporative light scattering detector (ELSD). Chitosans with different fractions of acetylation (FA) and molecular weights (Mw) were hydrolyzed using a chitosanase/chitinase mixture. By subsequent N-acetylation with isotopically labelled acetic anhydride, COS mixtures with FA = 1 were obtained allowing for chromatographic separation solely based on their degree of polymerization (DP). ELSD data conversion into molar concentrations was realized using COS-specific external calibration curves, and mass spectrometry (MS) data informed about the chitosan's FA. The overall chitosan concentration was determined by simple addition of the COS concentrations multiplied by their DP. Validity of the method is shown for chitosan in presence of various co-solutes such as the protein BSA, the polysaccharide dextran and the monosaccharide glucosamine.

9.
Fungal Biol Biotechnol ; 8(1): 19, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893090

RESUMO

Chitins and chitosans are among the most widespread and versatile functional biopolymers, with interesting biological activities and superior material properties. While chitins are evolutionary ancient and present in many eukaryotes except for higher plants and mammals, the natural distribution of chitosans, i.e. extensively deacetylated derivatives of chitin, is more limited. Unequivocal evidence for its presence is only available for fungi where chitosans are produced from chitin by the action of chitin deacetylases. However, neither the structural details such as fraction and pattern of acetylation nor the physiological roles of natural chitosans are known at present. We hypothesise that the chitin deacetylases are generating chitins and chitosans with specific acetylation patterns and that these provide information for the interaction with specific chitin- and chitosan-binding proteins. These may be structural proteins involved in the assembly of the complex chitin- and chitosan-containing matrices such as fungal cell walls and insect cuticles, chitin- and chitosan-modifying and -degrading enzymes such as chitin deacetylases, chitinases, and chitosanases, but also chitin- and chitosan-recognising receptors of the innate immune systems of plants, animals, and humans. The acetylation pattern, thus, may constitute a kind of 'ChitoCode', and we are convinced that new in silico, in vitro, and in situ analytical tools as well as new synthetic methods of enzyme biotechnology and organic synthesis are currently offering an unprecedented opportunity to decipher this code. We anticipate a deeper understanding of the biology of chitin- and chitosan-containing matrices, including their synthesis, assembly, mineralisation, degradation, and perception. This in turn will improve chitin and chitosan biotechnology and the development of reliable chitin- and chitosan-based products and applications, e.g. in medicine and agriculture, food and feed sciences, as well as cosmetics and material sciences.

10.
J Biol Chem ; 297(4): 101129, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478709

RESUMO

Chitin deacetylases (CDAs) are found in many different organisms ranging from marine bacteria to fungi and insects. These enzymes catalyze the removal of acetyl groups from chitinous substrates generating various chitosans, linear copolymers consisting of N-acetylglucosamine (GlcNAc) and glucosamine. CDAs influence the degree of acetylation of chitosans as well as their pattern of acetylation, a parameter that was recently shown to influence the physicochemical properties and biological activities of chitosans. The binding site of CDAs typically consists of around four subsites, each accommodating a single sugar unit of the substrate. It has been hypothesized that the subsite preferences for GlcNAc or glucosamine units play a crucial role in the acetylation pattern they generate, but so far, this characteristic was largely ignored and still lacks structural data on the involved residues. Here, we determined the crystal structure of an Aspergillus niger CDA. Then, we used molecular dynamics simulations, backed up with a variety of in vitro activity assays using different well-defined polymeric and oligomeric substrates, to study this CDA in detail. We found that Aspergillus niger CDA strongly prefers a GlcNAc sugar unit at its -1 subsite and shows a weak GlcNAc preference at the other noncatalytic subsites, which was apparent both when deacetylating and N-acetylating oligomeric substrates. Overall, our results show that the combination of in vitro and in silico methods used here enables the detailed analysis of CDAs, including their subsite preferences, which could influence their substrate targets and the characteristics of chitosans produced by these species.


Assuntos
Amidoidrolases/química , Aspergillus niger/enzimologia , Simulação por Computador , Proteínas Fúngicas/química , Acetilglucosamina/química , Amidoidrolases/metabolismo , Cristalografia por Raios X , Domínios Proteicos , Especificidade por Substrato
11.
Carbohydr Polym ; 270: 118338, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364593

RESUMO

Ulvans from green algae are promising compounds for plant protection because they are environmentally friendly and induce plant defense responses. We analyzed the structure-function relationship of ulvan polymers and oligomers for their elicitor activity in suspension-cultured cells of three dicot species. The polysaccharide from Ulva fasciata was characterized regarding its monosaccharide composition, degree of sulfation, and molecular mass. The polymer was partially depolymerized using acid hydrolysis, and the oligomers were separated using size exclusion chromatography. The oligomeric fractions were analyzed revealing mostly sulfated and de-sulfated ulvan dimers. Both the polymer and the oligomer fractions induced an NADPH oxidase-dependent oxidative burst in plant cells. The elicitor activity of the ulvan dimers did not require sulfation. By identifying the smallest elicitor-active unit, HexA-Rha, we took an important next step to understand how the structure influences ulvan elicitor responses. The desulfated ulvan dimer is discussed as a promising agro-biologic for sustainable agriculture.


Assuntos
Polissacarídeos/química , Ulva/química , Clorófitas/química , Cromatografia em Gel/métodos , Hidrólise , Peso Molecular , Oligossacarídeos/química , Oxirredução , Imunidade Vegetal , Polímeros/química , Explosão Respiratória , Ulva/metabolismo
12.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653886

RESUMO

The biotrophic fungus Ustilago maydis harbors a chitin deacetylase (CDA) family of six active genes as well as one pseudogene which are differentially expressed during colonization. This includes one secreted soluble CDA (Cda4) and five putatively glycosylphosphatidylinositol (GPI)-anchored CDAs, of which Cda7 belongs to a new class of fungal CDAs. Here, we provide a comprehensive functional study of the entire family. While budding cells of U. maydis showed a discrete pattern of chitosan staining, biotrophic hyphae appeared surrounded by a chitosan layer. We purified all six active CDAs and show their activity on different chitin substrates. Single as well as multiple cda mutants were generated and revealed a virulence defect for mutants lacking cda7 We implicated cda4 in production of the chitosan layer surrounding biotrophic hyphae and demonstrated that the loss of this layer does not reduce virulence. By combining different cda mutations, we detected redundancy as well as specific functions for certain CDAs. Specifically, certain combinations of mutations significantly affected virulence concomitantly with reduced adherence, appressorium formation, penetration, and activation of plant defenses. Attempts to inactivate all seven cda genes simultaneously were unsuccessful, and induced depletion of cda2 in a background lacking the other six cda genes illustrated an essential role of chitosan for cell wall integrity.IMPORTANCE The basidiomycete Ustilago maydis causes smut disease in maize, causing substantial losses in world corn production. This nonobligate pathogen penetrates the plant cell wall with the help of appressoria and then establishes an extensive biotrophic interaction, where the hyphae are tightly encased by the plant plasma membrane. For successful invasion and development in plant tissue, recognition of conserved fungal cell wall components such as chitin by the plant immune system needs to be avoided or suppressed. One strategy to achieve this lies in the modification of chitin to chitosan by chitin deacetylases (CDAs). U. maydis has seven cda genes. This study reveals discrete as well as redundant contributions of these genes to virulence as well as to cell wall integrity. Unexpectedly, the inactivation of all seven genes is not tolerated, revealing an essential role of chitosan for viability.


Assuntos
Amidoidrolases/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Quitina/metabolismo , Quitosana/metabolismo , Interações Hospedeiro-Patógeno , Fatores de Virulência/genética , Amidoidrolases/classificação , Amidoidrolases/metabolismo , Basidiomycota/enzimologia , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Virulência , Zea mays/microbiologia
13.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105791

RESUMO

During the past decade, detailed studies using well-defined 'second generation' chitosans have amply proved that both their material properties and their biological activities are dependent on their molecular structure, in particular on their degree of polymerisation (DP) and their fraction of acetylation (FA). Recent evidence suggests that the pattern of acetylation (PA), i.e., the sequence of acetylated and non-acetylated residues along the linear polymer, is equally important, but chitosan polymers with defined, non-random PA are not yet available. One way in which the PA will influence the bioactivities of chitosan polymers is their enzymatic degradation by sequence-dependent chitosan hydrolases present in the target tissues. The PA of the polymer substrates in conjunction with the subsite preferences of the hydrolases determine the type of oligomeric products and the kinetics of their production and further degradation. Thus, the bioactivities of chitosan polymers will at least in part be carried by the chitosan oligomers produced from them, possibly through their interaction with pattern recognition receptors in target cells. In contrast to polymers, partially acetylated chitosan oligosaccharides (paCOS) can be fully characterised concerning their DP, FA, and PA, and chitin deacetylases (CDAs) with different and known regio-selectivities are currently emerging as efficient tools to produce fully defined paCOS in quantities sufficient to probe their bioactivities. In this review, we describe the current state of the art on how CDAs can be used in forward and reverse mode to produce all of the possible paCOS dimers, trimers, and tetramers, most of the pentamers and many of the hexamers. In addition, we describe the biotechnological production of the required fully acetylated and fully deacetylated oligomer substrates, as well as the purification and characterisation of the paCOS products.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Quitosana/química , Oligossacarídeos/química , Acetilação , Amidoidrolases/genética , Biotecnologia/métodos , Quitina/química , Quitina/metabolismo , Quitosana/metabolismo , Espectrometria de Massas , Oligossacarídeos/síntese química , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/metabolismo , Polimerização , Terminologia como Assunto
14.
Anal Chem ; 92(4): 3246-3252, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31940178

RESUMO

Partially acetylated chitosan oligosaccharides (paCOS), consisting of ß-1,4-linked N-acetyl-d-glucosamine and d-glucosamine units, possess diverse bioactivities that can be used for applications in, e.g., biomedicine, agriculture, and pharmaceutics. Establishing structure-function relationships and revealing modes of action requires the availability of structurally defined paCOS that can best be produced using chitin- and chitosan-modifying enzymes, such as chitinases and chitosanases, with known and defined subsite specificities. To enlarge the spectrum of such enzymes and, consequently, defined paCOS available, we have developed a two-step, microtiter plate-based high-throughput screening assay that allows quantification of the activity and subsite specificities of chitosan hydrolases. In a first step, the activities of the enzymes are quantified using a reducing end assay, and enzymes with sufficient activity are then screened for their subsite specificities using mass spectrometric analysis of their products when acting on well-defined chitosan polymers as substrates. The rapid UHPLC-ELSD-ESI-MS2 method does not require labeling steps or addition of standards, and the principal component analysis of the fragment ion intensities of just two isomeric oligomer groups, GlcNAc1GlcN3 and GlcNAc2GlcN2, sufficed to identify, in a directed evolution, the site-saturation mutagenesis library of Bacillus sp. MN chitosanase consisting of 167 muteins, enzymes that significantly differed in their subsite specificities from the wildtype enzyme. Detailed analyses of a few selected muteins proved that the screening method is efficient and accurate in predicting altered subsite specificities.


Assuntos
Quitinases/metabolismo , Cromatografia Líquida de Alta Pressão , Ensaios Enzimáticos/métodos , Glicosídeo Hidrolases/metabolismo , Espectrometria de Massas , Bacillus/enzimologia , Especificidade por Substrato
15.
Int J Biol Macromol ; 131: 1008-1013, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30910681

RESUMO

Chitosan obtained by enzymatic deacetylation of chitin using chitin deacetylase (CDA) holds promise primarily due to the possibility to yield chitosan with non-random patterns of acetylation and more environmentally friendly process compared to chemical deacetylation. In the present study, a sustainable bioprocess is reported for over-expression of a bacterial CDA in E. coli pLysS cells. A Bacillus licheniformis CDA gene is identified in the genome of the bacterium, cloned, and expressed, yielding enzymatically active recombinant protein. For enzyme production, a growth medium is formulated using carbon and nitrogen sources, which do not compete with the human food chain. The maximum enzyme activity of 320 ±â€¯20 U/mL is achieved under optimized conditions. The CDA productivity is improved by about 23 times in shake flask culture by optimizing operating conditions and medium components. The CDA is purified and the enzyme kinetic values i.e. Km, Vmax and Kcat are reported. Also the effect of cofactors, temperature, and pH on the enzyme activity is reported. Further, economic yield is proposed for production of CDA through this bioprocess.


Assuntos
Amidoidrolases/genética , Bacillus licheniformis/genética , Escherichia coli/genética , Expressão Gênica , Proteínas Recombinantes/genética , Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Bacillus licheniformis/enzimologia , Cromatografia de Afinidade , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
J Am Chem Soc ; 141(7): 3137-3145, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30673279

RESUMO

Chitosans, a family of ß-(1,4)-linked, partially N-acetylated polyglucosamines, are considered to be among the most versatile and most promising functional biopolymers. Chemical analysis and bioactivity studies revealed that the functionalities of chitosans strongly depend on the polymers' degree of polymerization and fraction of acetylation. More recently, the pattern of acetylation ( PA) has been proposed as another important parameter to influence functionalities of chitosans. We therefore carried out studies on the acetylation pattern of chitosan polymers produced by three recombinant fungal chitin deacetylases (CDAs) originating from different species, namely, Podospora anserina, Puccinia graminis f. sp. tritici, and Pestalotiopsis sp. We analyzed the chitosans by 1H NMR, 13C NMR, and SEC-MALS and established new methods for PA analysis based on enzymatic mass spectrometric fingerprinting and in silico simulations. Our studies strongly indicate that the different CDAs indeed produce chitosans with different PA. Finally, Zimm plot analysis revealed that enzymatically treated polymers differ with respect to their second virial coefficient and radius of gyration indicating an influence of PA on polymer-solvent interactions.


Assuntos
Quitosana/química , Acetilação , Alternaria/enzimologia , Amidoidrolases/química , Amidoidrolases/genética , Ascomicetos/enzimologia , Basidiomycota/enzimologia , Quitinases/química , Quitinases/genética , Escherichia coli/genética , Hexosaminidases/química , Hexosaminidases/genética , Hidrólise , Espectrometria de Massas/métodos , Estrutura Molecular , Podospora/enzimologia , Análise de Componente Principal , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Schizosaccharomyces/genética
17.
Mol Plant Microbe Interact ; 31(11): 1145-1153, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29787346

RESUMO

Chitin, a linear polymer of N-acetyl-d-glucosamine, and chitosans, fully or partially deacetylated derivatives of chitin, are known to elicit defense reactions in higher plants. We compared the ability of chitin and chitosan oligomers and polymers (chitin oligomers with degree of polymerization [DP] 3 to 8; chitosan oligomers with degree of acetylation [DA] 0 to 35% and DP 3 to 15; chitosan polymers with DA 1 to 60% and DP approximately 1,300) to elicit an oxidative burst indicative of induced defense reactions in Arabidopsis thaliana seedlings. Fully deacetylated chitosans were not able to trigger a response; elicitor activity increased with increasing DA of chitosan polymers. Partially acetylated chitosan oligomers required a minimum DP of 6 and at least four N-acetyl groups to trigger a response. Invariably, elicitation of an oxidative burst required the presence of the chitin receptor AtCERK1. Our results as well as previously published studies on chitin and chitosan perception in plants are best explained by a new general model of LysM-containing receptor complexes in which two partners form a long but off-set chitin-binding groove and are, thus, dimerized by one chitin or chitosan molecule, sharing a central GlcNAc unit with which both LysM domains interact. To verify this model and to distinguish it from earlier models, we assayed elicitor and inhibitor activities of selected partially acetylated chitosan oligomers with fully defined structures. In contrast to the initial 'continuous groove', the original 'sandwich', or the current 'sliding mode' models for the chitin/chitosan receptor, the here-proposed 'slipped sandwich' model-which builds on these earlier models and represents a consensus combination of these-is in agreement with all experimental observations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Quitina/metabolismo , Quitosana/metabolismo , Oryza/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Acetilação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quitina/química , Quitosana/química , Dimerização , Modelos Biológicos , Modelos Moleculares , Oryza/genética , Proteínas Serina-Treonina Quinases/genética , Explosão Respiratória , Plântula/genética , Plântula/fisiologia
18.
Int J Biol Macromol ; 114: 453-461, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29551512

RESUMO

Chitosans with defined characteristics have been shown to possess reproducible bioactivities for numerous applications. A promising approach for producing chitosans with defined degrees of polymerization (DP), degrees of acetylation (DA), and patterns of acetylation (PA) involves using chitin-modifying enzymes. One such enzyme, the chitinase Tv-ECH1 belonging to the glycoside hydrolase (GH) family 18, seems to have an important role in the biocontrol properties of the fungus Trichoderma virens, suggesting its potential in generating novel chitosans for plant health applications. In this study, the Tv-ECH1 enzyme was overexpressed in the methylotrophic yeast Pichia pastoris, yielding large amounts (up to 2mgmL-1) of purified recombinant enzyme of high activity, high purity, and high stability, making the system promising for industrial production of Tv-ECH1. The purified Tv-ECH1 chitinase displayed a wide optimal pH range from 4.5 to 6 and an optimal temperature of 37°C. Detailed subsite specificity analyses revealed high preference for acetylated residues at all four subsites analyzed (-2, -1, +1, +2), making Tv-ECH1 a promising candidate for the biotechnological production of specific chitosan oligomers and for the characterization of chitosan polymers via enzymatic fingerprinting.


Assuntos
Quitinases , Proteínas Fúngicas , Trichoderma , Quitinases/biossíntese , Quitinases/química , Quitinases/genética , Quitinases/isolamento & purificação , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Trichoderma/enzimologia , Trichoderma/genética
19.
Carbohydr Polym ; 183: 1-10, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352863

RESUMO

Chitosan is a structurally diverse biopolymer that is commercially derived from chitin by chemical processing, but chitin deacetylases (CDAs) potentially offer a sustainable and more controllable approach allowing the production of chitosans with tailored structures and biological activities. We investigated the CDA from Podospora anserina (PaCDA) which is closely related to Colletotrichum lindemuthianum CDA in the catalytic domain, but unique in having two chitin-binding domains. We produced recombinant PaCDA in Hansenula polymorpha for biochemical characterization and found that the catalytic domain of PaCDA is also functionally similar to C. lindemuthianum CDA, though differing in detail. When studying the enzyme's mode of action on chitin oligomers by quantitative mass-spectrometric sequencing, we found almost all possible sequences up to full deacetylation but with a clear preference for specific products. Deletion muteins lacking one or both CBDs confirmed their proposed function in supporting the enzymatic conversion of the insoluble substrate colloidal chitin.

20.
Sci Rep ; 7(1): 17692, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255209

RESUMO

Some of the most abundant biomolecules on earth are the polysaccharides chitin and chitosan of which especially the oligomeric fractions have been extensively studied regarding their biological activities. However, most of these studies have not been able to assess the activity of a single, defined, partially acetylated chitosan oligosaccharide (paCOS). Instead, they have typically analyzed chemically produced, rather poorly characterized mixtures, at best with a single, defined degree of polymerization (DP) and a known average degree of acetylation (DA), as no pure and well-defined paCOS are currently available. We here present data on the enzymatic production of all 14 possible partially acetylated chitosan tetramers, out of which four were purified (>95%) regarding DP, DA, and pattern of acetylation (PA). We used bacterial, fungal, and viral chitin deacetylases (CDAs), either to partially deacetylate the chitin tetramer; or to partially re-N-acetylate the glucosamine tetramer. Both reactions proceeded with surprisingly strong and enzyme-specific regio-specificity. These pure and fully defined chitosans will allow to investigate the particular influence of DP, DA, and PA on the biological activities of chitosans, improving our basic understanding of their modes of action, e.g. their molecular perception by patter recognition receptors, but also increasing their usefulness in industrial applications.


Assuntos
Quitina/química , Quitosana/química , Quitosana/síntese química , Acetilação , Amidoidrolases/química , Quitina/síntese química , Quitina/isolamento & purificação , Quitinases/metabolismo , Quitosana/isolamento & purificação , Oligossacarídeos/química , Polimerização , Processamento de Proteína Pós-Traducional , Proteínas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA