Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(2): 218-229, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36443572

RESUMO

Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-ß-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.


Assuntos
Bifidobacterium longum , Manose , Animais , Humanos , Manose/metabolismo , Bifidobacterium longum/metabolismo , Microscopia Crioeletrônica , Polissacarídeos/química , Manosidases/metabolismo , Glicosídeo Hidrolases/química , Bifidobacterium/metabolismo , Mamíferos
3.
Nat Chem Biol ; 16(8): 920-929, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451508

RESUMO

The fundamental and assorted roles of ß-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on ß-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/ß)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical ß-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of ß-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of ß-1,3-glucans, which can be exploited for biotechnological applications.


Assuntos
Glucana 1,3-beta-Glucosidase/química , Glicosídeo Hidrolases/química , beta-Glucanas/química , Sequência de Aminoácidos/genética , Sítios de Ligação/fisiologia , Domínio Catalítico/fisiologia , Cristalografia por Raios X/métodos , Glucana 1,3-beta-Glucosidase/metabolismo , Glucanos/química , Glicosídeos/química , Modelos Moleculares , Especificidade por Substrato/fisiologia
4.
Appl Microbiol Biotechnol ; 99(12): 5095-107, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25605422

RESUMO

Xyloglucan-specific endo-ß-1,4-glucanases (Xegs, EC 3.2.1.151) exhibit high catalytic specificity for ß-1,4 linkages of xyloglucan, a branched hemicellulosic polysaccharide abundant in dicot primary cell walls and present in many monocot species. In nature, GH12 Xegs are not associated with carbohydrate-binding modules (CBMs), and here, we have investigated the effect of the fusion of the xyloglucan-specific CBM44 on the structure and function of a GH12 Xeg from Aspergillus niveus (XegA). This fusion presented enhanced catalytic properties and conferred superior thermal stability on the XegA. An increased k cat (chimera, 177.03 s(-1); XegA, 144.31 s(-1)) and reduced KM (chimera, 1.30 mg mL(-1); XegA, 1.50 mg mL(-1)) resulted in a 1.3-fold increase in catalytic efficiency of the chimera over the parental XegA. Although both parental and chimeric enzymes presented catalytic optima at pH 5.5 and 60 °C, the thermostabilitiy of the chimera at 60 °C was greater than the parental XegA. Moreover, the crystallographic structure of XegA together with small-angle X-ray scattering (SAXS) and molecular dynamics simulations revealed that the spatial arrangement of the domains in the chimeric enzyme resulted in the formation of an extended binding cleft that may explain the improved kinetic properties of the CBM44-XegA chimera.


Assuntos
Aspergillus/enzimologia , Endo-1,3(4)-beta-Glucanase/química , Endo-1,3(4)-beta-Glucanase/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Aspergillus/química , Aspergillus/genética , Endo-1,3(4)-beta-Glucanase/genética , Proteínas Fúngicas/genética , Glucanos/química , Cinética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Engenharia de Proteínas , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Difração de Raios X , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA