Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(11): e9491, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36398198

RESUMO

Manually annotating audio files for bird species richness estimation or machine learning validation is a time-intensive task. A premium is placed on the subselection of files that will maximize the efficiency of unique additional species identified, to be used for future analyses. Using acoustic data collected in 17 plots, we created 60 subsetting scenarios across three gradients: intensity (minutes in an hour), day phase (dawn, morning, or both), and duration (number of days) for manual annotation. We analyzed the effect of these variables on observed bird species richness and assemblage composition at both the local and entire study area scale. For reference, results were also compared to richness and composition estimated by the traditional point count method. Intensity, day phase, and duration all affected observed richness in decreasing respective order. These variables also significantly affected observed assemblage composition (in the same order of effect size), but only the day phase produced compositional dissimilarity that was due to phenological traits of individual bird species, rather than differences in species richness. All annotation scenarios requiring equal sampling effort to point counts yielded higher species richness than the point count method. Our results show that a great majority of species can be obtained by annotating files at high sampling intensities (every 3 or 6 min) in the morning period (post-dawn) over a duration of two days. Depending on a study's aim, different subsetting parameters will produce different assemblage compositions, potentially omitting rare or crepuscular species, species representing additional functional groups and natural history guilds, or species of higher conservation concern. We do not recommend one particular subsetting regime for all research objectives, but rather present multiple scenarios for researchers to understand how intensity, day phase, and duration interact to identify the best subsetting regime for one's particular research interests.

2.
BMC Biol ; 19(1): 210, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556096

RESUMO

BACKGROUND: Species co-occurrences can have profound effects on the habitat use of species, and therefore habitat structure alone cannot fully explain observed abundances. To account for this aspect of community organization, we developed multi-species abundance models, incorporating the local effect of co-occurring and potentially associated species, alongside with environmental predictors, linked mainly to forest management intensity. We coupled it with a landscape-scale analysis to further examine the role of management intensity in modifying the habitat preferences in connection with the landscape context. Using empirical data from the Black Forest in southern Germany, we focused on the forest bird assemblage and in particular on the cavity-nesting and canopy-foraging guilds. We included in the analysis species that co-occur and for which evidence suggests association is likely. RESULTS: Our findings show that the local effect of species associations can mitigate the effects of management intensity on forest birds. We also found that bird species express wider habitat preferences in forests under higher management intensity, depending on the landscape context. CONCLUSIONS: We suspect that species associations may facilitate the utilization of a broader range of environmental conditions under intensive forest management, which benefits some species over others. Networks of associations may be a relevant factor in the effectiveness of conservation-oriented forest management.


Assuntos
Ecossistema , Florestas , Animais , Biodiversidade , Aves , Alemanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA