Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826470

RESUMO

Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of miR-100 and miR-125b that can alter gene expression by both cell- and non-cell-autonomous mechanisms. We previously showed that these miRNAs activate Wnt signaling in colorectal cancer (CRC) through noncanonical pairing with 5 negative regulators of Wnt signaling. To identify additional targets of miR-100 and miR-125b , we used bioinformatic approaches comparing multiple CRC cell lines, including knockout lines lacking one or both of these miRNAs. From an initial list of 96 potential mRNA targets, we tested 15 targets with 8 showing significant downregulation in the presence of miR-100 and miR-125b . Among these, Cingulin (CGN) and Protein tyrosine phosphatase receptor type-R (PTPRR) are downregulated in multiple cancers, consistent with regulation by increased levels of miR-100 and miR-125b. We also show that increased cellular levels of miR-100 and miR-125b enhance 3D growth and invasiveness in CRC and glioblastoma cell lines. Lastly, we demonstrate that extracellular transfer of miR-100 and miR-125b can silence both reporter and endogenous mRNA targets in recipient cells and also increase the invasiveness of recipient spheroid colonies when grown under 3D conditions in type I collagen.

2.
Biomaterials ; 308: 122531, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38531198

RESUMO

Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the structure, molecular composition, and mechanical properties of irradiated murine mammary fat pads (MFPs) and developed ECM hydrogels from decellularized tissues (dECM) to assess the effects of RT-induced ECM changes on breast cancer cell behavior. Irradiated MFPs were characterized by increased ECM deposition and fiber density compared to unirradiated controls, which may provide a platform for cell invasion and proliferation. ECM component changes in collagens I, IV, and VI, and fibronectin were observed following irradiation in both MFPs and dECM hydrogels. Encapsulated TNBC cell proliferation and invasive capacity was enhanced in irradiated dECM hydrogels. In addition, TNBC cells co-cultured with macrophages in irradiated dECM hydrogels induced M2 macrophage polarization and exhibited further increases in proliferation. Our study establishes that the ECM in radiation-damaged sites promotes TNBC invasion and proliferation as well as an immunosuppressive microenvironment. This work represents an important step toward elucidating how changes in the ECM after RT contribute to breast cancer recurrence.


Assuntos
Proliferação de Células , Matriz Extracelular , Hidrogéis , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Animais , Matriz Extracelular/metabolismo , Microambiente Tumoral/efeitos da radiação , Hidrogéis/química , Feminino , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Linhagem Celular Tumoral , Camundongos , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/radioterapia , Macrófagos/metabolismo , Glândulas Mamárias Animais/efeitos da radiação
3.
Prog Lipid Res ; 80: 101055, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32791170

RESUMO

Over the past decade, the study of metabolic abnormalities in cancer cells has risen dramatically. Cancer cells can thrive in challenging environments, be it the hypoxic and nutrient-deplete tumor microenvironment or a distant tissue following metastasis. The ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment and adjacent stroma. Adipocytes can be activated by cancer cells to lipolyze their triglyceride stores, delivering secreted fatty acids to cancer cells for uptake through numerous fatty acid transporters. Cancer-associated fibroblasts are also implicated in lipid secretion for cancer cell catabolism and lipid signaling leading to activation of mitogenic and migratory pathways. As these cancer-stromal interactions are exacerbated during tumor progression, fatty acids secreted into the microenvironment can impact infiltrating immune cell function and phenotype. Lipid metabolic abnormalities such as increased fatty acid oxidation and de novo lipid synthesis can provide survival advantages for the tumor to resist chemotherapeutic and radiation treatments and alleviate cellular stresses involved in the metastatic cascade. In this review, we highlight recent literature that demonstrates how lipids can shape each part of the cancer lifecycle and show that there is significant potential for therapeutic intervention surrounding lipid metabolic and signaling pathways.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Humanos , Metabolismo dos Lipídeos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Linfócitos T/metabolismo , Linfócitos T/patologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA