Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J For Res ; : 1-13, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37363183

RESUMO

Forest stand and environmental factors influence soil organic carbon (SOC) storage, but little is known about their relative impacts in different soil layers. Moreover, how environmental factors modulate the impact of stand factors, particularly species mixing, on SOC storage, is largely unexplored. In this study, conducted in 21 forest triplets (two monocultures of different species and their mixture on the same site) distributed in Europe, we tested the hypothesis that stand factors (functional identity and diversity) have stronger effects on topsoil (FF + 0-10 cm) C storage than environmental factors (climatic water availability, clay + silt content, oxalate-extractable Al-Alox) but that the opposite occurs in the subsoil (10-40 cm). We also tested the hypothesis that functional diversity improves SOC storage under high climatic water availability, clay + silt contents, and Alox. We characterized functional identity as the basal area proportion of broadleaved species (beech and/or oak), and functional diversity as the product of broadleaved and conifer (pine) proportions. The results show that functional identity was the main driver of topsoil C storage, while climatic water availability had the largest control on subsoil C storage. Functional diversity decreased topsoil C storage under increasing climatic water availability, but the opposite was observed in the subsoil. Functional diversity effects on topsoil C increased with increasing clay + silt content, while its effects on subsoil C were negative at increasing Alox content. This suggests that functional diversity effect on SOC storage changes along gradients in environmental factors and the direction of effects depends on soil depth.

2.
Sci Total Environ ; 872: 162234, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36791854

RESUMO

Complexation of dissolved organic matter (DOM) with cations and minerals contributes to the stabilization of carbon in soils, and can enable the transport of metals in the environment. Hence, a proper understanding of mechanisms that control DOM binding properties in the soil is important for major environmental challenges, such as climate change and stream pollution. However, the role of DOM source in those mechanisms remains understudied. Here, we consider poorly drained tropical Podzols as a model environment to isolate effects of aluminium and DOM on sorption and desorption processes in podzolisation. We collected E- and Bh-horizons from a Brazilian coastal Podzol under tropical rainforest to conduct a column experiment, and percolated the columns with DOM collected from a stream (Stream), peat water (Peat), litter (Litter) and charred litter (Char). To quantify sorption and desorption from the columns, leachates were analysed for DOC content, aluminium content, pH, and the amount of fulvic acid relative to humic acid. The results showed large differences in DOC retention between DOM-types, which were consistent over all columns. Retention of DOC in the column varied between 25 % and 92 % for DOM-type Stream, between 33 % and 63 % for DOM-type Peat, between 22 % and 47 % for DOM-type Litter, and between 8 % and 49 % for DOM-type Char. Similarly, desorption from columns with B-horizon material highly differed between DOM-types. Percolation with DOM-types Stream and Peat caused a release of native DOC from B columns that was higher than in those percolated with water only. On the other hand, percolation of B columns with DOM-types Litter and Char caused a net DOC retention. These differences reflect that certain DOM-types hindered desorption, while other DOM-types caused active desorption. The large differences in sorption/desorption between DOM-types implies that changes in environmental conditions may highly influence the fate of soil carbon in Podzols.

3.
J Chem Ecol ; 48(11-12): 841-849, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302913

RESUMO

Silicon (Si) fertilization alleviates biotic stresses in plants. Si enhances plant resistance against phytophagous insects through physical and biochemical mechanisms. In particular, Si modifies jasmonic acid levels and the emissions of herbivore-induced plant volatiles (HIPVs). Here, we investigated whether Si accumulation in the tissues of maize leaves modifies the emissions of constitutive and herbivore-induced plant volatiles, with cascade deterrent effects on oviposition site selection by Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Maize plants were cultivated in a hydroponic system under three Si concentrations, resulting in three groups of plants expressing different Si concentrations in their tissues (0.31 ± 0.04, 4.69 ± 0.49, and 9.56 ± 0.30 g Si. Kg- 1 DW). We collected volatiles from undamaged and caterpillar-infested plants, and found that Si concentration in plant tissues had no significant impact. Jasmonic acid content was high in insect-infested plants, but was similar across all Si treatments. Oviposition site selection bioassays using fertilized S. exigua females showed that Si concentration in plant tissues did not affect the number of eggs laid on Si-treated plants. In conclusion, our study shows that the Si content in maize tissues does not impact the semiochemical interactions with S. exigua.


Assuntos
Silício , Zea mays , Animais , Feminino , Spodoptera , Silício/farmacologia , Oviposição , Herbivoria , Larva
4.
Eur J For Res ; 141(3): 467-480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469155

RESUMO

While the impacts of forest management options on carbon (C) storage are well documented, the way they affect C distribution among ecosystem components remains poorly investigated. Yet, partitioning of total forest C stocks, particularly between aboveground woody biomass and the soil, greatly impacts the stability of C stocks against disturbances in forest ecosystems. This study assessed the impact of species composition and stand density on C storage in aboveground woody biomass (stem + branches), coarse roots, and soil, and their partitioning in pure and mixed forests in Europe. We used 21 triplets (5 beech-oak, 8 pine-beech, 8 pine-oak mixed stands, and their respective monocultures at the same sites) in seven European countries. We computed biomass C stocks from total stand inventories and species-specific allometric equations, and soil organic C data down to 40 cm depth. On average, the broadleaved species stored more C in aboveground woody biomass than soil, while C storage in pine was equally distributed between both components. Stand density had a strong effect on C storage in tree woody biomass but not in the soil. After controlling for stand basal area, the mixed stands had, on average, similar total C stocks (in aboveground woody biomass + coarse roots + soil) to the most performing monocultures. Although species composition and stand density affect total C stocks and its partitioning between aboveground woody biomass and soil, a large part of variability in soil C storage was unrelated to stand characteristics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10342-022-01453-9.

5.
Trends Plant Sci ; 26(11): 1116-1125, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34315662

RESUMO

Plants have evolved numerous strategies to acquire poorly available nutrients from soil, including the release of carboxylates from their roots. Silicon (Si) release from mineral dissolution increases in the presence of chelating substances, and recent evidence shows that leaf [Si] increases markedly in old phosphorus (P)-depleted soils, where many species exhibit carboxylate-releasing strategies, compared with younger P-richer soils. Here, we propose that root-released carboxylates, and more generally rhizosphere processes, play an overlooked role in plant Si accumulation by increasing soil Si mobilisation from minerals. We suggest that Si mobilisation is costly in terms of carbon but becomes cheaper if those costs are already met to acquire poorly available P. Uptake of the mobilised Si by roots will then depend on whether they express Si transporters.


Assuntos
Micorrizas , Fósforo , Raízes de Plantas , Rizosfera , Silício , Solo
6.
Ecol Lett ; 24(5): 984-995, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33709494

RESUMO

The resource availability hypothesis predicts that plants adapted to infertile soils have high levels of anti-herbivore leaf defences. This hypothesis has been mostly explored for secondary metabolites such as phenolics, whereas it remains underexplored for silica-based defences. We determined leaf concentrations of total phenols and silicon (Si) in plants growing along the 2-million-year Jurien Bay chronosequence, exhibiting an extreme gradient of soil fertility. We found that nitrogen (N) limitation on young soils led to a greater expression of phenol-based defences, whereas old, phosphorus (P)-impoverished soils favoured silica-based defences. Both defence types were negatively correlated at the community and individual species level. Our results suggest a trade-off among these two leaf defence strategies based on the strength and type of nutrient limitation, thereby opening up new perspectives for the resource availability hypothesis and plant defence research. This study also highlights the importance of silica-based defences under low P supply.


Assuntos
Ecossistema , Solo , Fenol , Fenóis , Folhas de Planta , Dióxido de Silício
7.
Front Plant Sci ; 11: 67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133016

RESUMO

Phytoliths are silica bodies formed in living plant tissues. Once deposited in soils through plant debris, they can readily dissolve and then increase the fluxes of silicon (Si) toward plants and/or watersheds. These fluxes enhance Si ecological services in agricultural and marine ecosystems through their impact on plant health and carbon fixation by diatoms, respectively. Fertilization increases crop biomass through the supply of plant nutrients, and thus may enhance Si accumulation in plant biomass. Si and phosphorus (P) fertilization enhance rice crop biomass, but their combined impact on Si accumulation in plants is poorly known. Here, we study the impact of combined Si-P fertilization on the production of phytoliths in rice plants. The combination of the respective supplies of 0.52 g Si kg-1 and 0.20 g P kg-1 generated the largest increase in plant shoot biomass (leaf, flag leaf, stem, and sheath), resulting in a 1.3-fold increase compared the control group. Applying combined Si-P fertilizer did not affect the content of organic carbon (OC) in phytoliths. However, it increased plant available Si in soil, plant phytolith content and its total stock (mg phytolith pot-1) in dry plant matter, leading to the increase of the total amount of OC within plants. In addition, P supply increased rice biomass and grain yield. Through these positive effects, combined Si-P fertilization may thus address agronomic (e.g., sustainable ecosystem development) and environmental (e.g., climate change) issues through the increase in crop yield and phytolith production as well as the promotion of Si ecological services and OC accumulation within phytoliths.

8.
J Environ Manage ; 260: 109576, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32046879

RESUMO

Agroecology has been suggested as a promising concept for reconciling agricultural production and environmental sustainability by optimizing ecological processes that deliver ecosystem services (ES) to replace external inputs. While this statement is widely agreed upon, few assessments of real-life conditions exist that assess multiple ES simultaneously. This paper provides an assessment of seven ES based on 14 indicators in three agroecological farming systems (AFS) and thirteen of their adjacent conventional farming systems (CFS). Based on field-scale measurements spread over three years, our findings suggest that the studied AFS succeed in providing a wider array of regulating services than their neighboring CFS. Soil aggregate stability and soil respiration rates are in general more supported in AFS, which also show lower pest abundance. On the other hand, CFS show higher grain production and higher performance for two out of three fodder quality indices. While this 'productivity gap' may be due to the still-evolving state of the studied AFS, we nuance this through the lens of an emerging paradigm to assess farming system multi-performance. It is now argued that we need to shift from a volume-focused production system to a system that also values the ecological processes underpinning crop production and other benefits to society. Based on our findings, we recommend future work to iterate our initiative, including several indicators per service and embed these into a wider context of co-adaptive science-practice to further develop context-specific and user-useful research.


Assuntos
Agricultura , Ecossistema , Conservação dos Recursos Naturais , Produção Agrícola , Grão Comestível , Fazendas
9.
J Plant Res ; 133(2): 271-277, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31897741

RESUMO

Studies of plant-silicon (Si) interaction benefit from safe, affordable and accurate methods to measure acid-insoluble silica (phytoliths) for a large number of plant samples. This study aimed to evaluate the comparability between two chemical methods to dissolve leaf silica, borate fusion and 1% sodium carbonate (Na2CO3) extraction, in combination of two detection methods (ICP, molybdenum-blue colorimetry).We compared the results obtained by these methods, using dried leaf samples of five tropical tree species that differ widely in Si concentrations (4 to 100 mg g DW-1). Leaf Si concentration values determined after the two extraction methods were highly correlated (y = 0.79x, R2 = 0.998). However, compared to the extraction with borate fusion, the 1% Na2CO3 method resulted in lower Si concentration per unit dry mass by 16% to 32% (mean of 24.2%). We also found that molybdenum-blue colorimetry method may interfere with certain extraction methods. A simple equation can be used to correct for systematic underestimation of Si contents determined after extraction with 1% Na2CO3, which is the least expensive and safest among commonly used methods for extraction of Si from land plants.


Assuntos
Boratos , Carbonatos , Fracionamento Químico/métodos , Plantas/química , Silício/análise
10.
Plants (Basel) ; 8(11)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652861

RESUMO

Environmental factors controlling silicon (Si) accumulation in terrestrial plant are key drivers to alleviate plant biotic stresses, including insect herbivory. While there is a general agreement on the ability of Si-enriched plant to better resist insect feeding, recent studies suggest that Si also primes biochemical defense pathways in various plant families. In this review, we first summarize how soil parameters and climate variables influence Si assimilation in plants. Then, we describe recent evidences on the ability of Si to modulate plant volatile emissions, with potential cascade effects on phytophagous insects and higher trophic levels. Even though the mechanisms still need to be elucidated, Si accumulation in plants leads to contrasting effects on the levels of the three major phytohormones, namely jasmonic acid, salicylic acid and ethylene, resulting in modified emissions of plant volatile organic compounds. Herbivore-induced plant volatiles would be particularly impacted by Si concentration in plant tissues, resulting in a cascade effect on the attraction of natural enemies of pests, known to locate their prey or hosts based on plant volatile cues. Since seven of the top 10 most important crops in the world are Si-accumulating Poaceae species, it is important to discuss the potential of Si mobility in soil-plant systems as a novel component of an integrated pest management.

11.
Environ Manage ; 63(5): 647-657, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30868313

RESUMO

Wildflower strips (WS) are proposed in many European countries as a strategy to enhance biodiversity and ecosystem services in arable fields. To create and maintain WS on nutrient-rich cultivated soils reveals challenging. Flowered species may be outcompeted by grasses due to high phosphorus content in soil. We studied during 5 years seed mixture (grass density in the seed mix) and mowing regime influenced the ability of WS to provide environmental benefits (flower provision for insects and landscape purposes, reduction of soil nutrient load) and respond to farmer concerns (noxious weed promotion, forage production). Lowered grass density increased flower abundance, but not diversity, only in the first 3 years. In the last 2 years mowing effects became determinant. Flower cover and richness were the highest under the twice-a-year mowing regime. This regime also increased forage quantity and quality. Flower colour diversity was conversely the highest where mowing occurred every two years. Potassium in the soil decreased under the twice-a-year mowing regime. Other nutrients were not affected. No management option kept noxious weed to an acceptable level after 5 years. This supports the need to test the efficacy of specific management practices such as selective clipping or spraying. Mowing WS twice a year was retained as the most favourable treatment to maintain species-rich strips with an abundant flower provision. It however implies to mow in late June, i.e. at the peak of insect abundance. It is therefore suggested to keep an unmown refuge zone when applying this management regime.


Assuntos
Poaceae , Solo , Animais , Ecossistema , Europa (Continente) , Pradaria , Nutrientes
13.
Environ Sci Technol ; 49(8): 4921-8, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25811074

RESUMO

Organochlorine molecules (Clorg) are surprisingly abundant in soils and frequently exceed chloride (Cl(-)) levels. Despite the widespread abundance of Clorg and the common ability of microorganisms to produce Clorg, we lack fundamental knowledge about how overall chlorine cycling is regulated in forested ecosystems. Here we present data from a long-term reforestation experiment where native forest was cleared and replaced with five different tree species. Our results show that the abundance and residence times of Cl(-) and Clorg after 30 years were highly dependent on which tree species were planted on the nearby plots. Average Cl(-) and Clorg content in soil humus were higher, at experimental plots with coniferous trees than in those with deciduous trees. Plots with Norway spruce had the highest net accumulation of Cl(-) and Clorg over the experiment period, and showed a 10 and 4 times higher Cl(-) and Clorg storage (kg ha(-1)) in the biomass, respectively, and 7 and 9 times higher storage of Cl(-) and Clorg in the soil humus layer, compared to plots with oak. The results can explain why local soil chlorine levels are frequently independent of atmospheric deposition, and provide opportunities for improved modeling of chlorine distribution and cycling in terrestrial ecosystems.


Assuntos
Cloro/análise , Ecossistema , Solo/química , Árvores , Biomassa , Cloro/farmacocinética , Florestas , França , Picea , Especificidade da Espécie
14.
Sci Rep ; 5: 7732, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25583031

RESUMO

Despite increasing recognition of the relevance of biological cycling for Si cycling in ecosystems and for Si export from soils to fluvial systems, effects of human cultivation on the Si cycle are still relatively understudied. Here we examined stable Si isotope (δ(30)Si) signatures in soil water samples across a temperate land use gradient. We show that - independent of geological and climatological variation - there is a depletion in light isotopes in soil water of intensive croplands and managed grasslands relative to native forests. Furthermore, our data suggest a divergence in δ(30)Si signatures along the land use change gradient, highlighting the imprint of vegetation cover, human cultivation and intensity of disturbance on δ(30)Si patterns, on top of more conventionally acknowledged drivers (i.e. mineralogy and climate).


Assuntos
Agricultura/métodos , Ecossistema , Silício/metabolismo , Isótopos , Plantas/metabolismo , Solo/química , Água , Tempo (Meteorologia)
15.
Front Plant Sci ; 5: 529, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25346741

RESUMO

The continental bio-cycling of silicon (Si) plays a key role in global Si cycle and as such partly controls global carbon (C) budget through nutrition of marine and terrestrial biota, accumulation of phytolith-occluded organic carbon (PhytOC) and weathering of silicate minerals. Despite the key role of elemental composition of phytoliths on their solubility in soils, the impact of plant cultivar and organ on the elemental composition of phytoliths in Si high-accumulator plants, such as rice (Oryza sativa) is not yet fully understood. Here we show that rice cultivar significantly impacts the elemental composition of phytoliths (Si, Al, Fe, and C) in different organs of the shoot system (grains, sheath, leaf and stem). The amount of occluded OC within phytoliths is affected by contents of Si, Al, and Fe in plants, while independent of the element composition of phytoliths. Our data document, for different cultivars, higher bio-available Si release from phytoliths of leaves and sheaths, which are characterized by higher enrichment with Al and Fe (i.e., lower Si/Al and Si/Fe ratios), compared to grains and stems. We indicate that phytolith solubility in soils may be controlled by rice cultivar and type of organs. Our results highlight that the role of the morphology, the hydration rate and the chemical composition in the solubility of phytoliths and the kinetic release of Si in soil solution needs to be studied further. This is central to a better understanding of the impact of soil amendment with different plant organs and cultivars on soil OC stock and on the delivery of dissolved Si as we show that sheath and leaf rice organs are both characterized by higher content of OC occluded in phytolith and higher phytolith solubility compared to grains and stems. Our study shows the importance of studying the impact of the agro-management on the evolution of sinks and sources of Si and C in soils used for Si-high accumulator plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA