Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14859, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937519

RESUMO

The spread of invasive species often follows a jump-dispersal pattern. While jumps are typically fostered by humans, local dispersal can occur due to the specific traits of a species, which are often poorly understood. This holds true for small hive beetles (Aethina tumida), which are parasites of social bee colonies native to sub-Saharan Africa. They have become a widespread invasive species. In 2017, a mark-release-recapture experiment was conducted in six replicates (A-F) using laboratory reared, dye-fed adults (N = 15,690). Honey bee colonies were used to attract flying small hive beetles at fixed spatial intervals from a central release point. Small hive beetles were recaptured (N = 770) at a maximum distance of 3.2 km after 24 h and 12 km after 1 week. Most small hive beetles were collected closest to the release point at 0 m (76%, replicate A) and 50 m (52%, replicates B to F). Temperature and wind deviation had significant effects on dispersal, with more small hive beetles being recaptured when temperatures were high (GLMM: slope = 0.99, SE = 0.17, Z = 5.72, P < 0.001) and confirming the role of wind for odour modulated dispersal of flying insects (GLMM: slope = - 0.39, SE = 0.14, Z = - 2.90, P = 0.004). Our findings show that the small hive beetles is capable of long-distance flights, and highlights the need to understand species specific traits to be considered for monitoring and mitigation efforts regarding invasive alien species.


Assuntos
Besouros , Voo Animal , Espécies Introduzidas , Animais , Besouros/fisiologia , Voo Animal/fisiologia , Distribuição Animal , Abelhas/fisiologia , Temperatura , Vento
2.
J Econ Entomol ; 113(6): 3032-3034, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970149

RESUMO

The small hive beetle, Aethina tumida Murray, is an invasive pest that has spread globally. Western honey bees, Apis mellifera Linnaeus (Hymenoptera: Apidae), are considered the most important host and infestations can lead to collapse of colonies. Larvae feed on honey, pollen, and brood inside the hive and leave the hive as postfeeding wandering larvae to pupate in the surrounding soil. Other host species include bumble bees, stingless bees, and solitary bees, all of which can facilitate small hive beetle reproduction and are used for greenhouse crop pollination worldwide. Here, we investigated if small hive beetles can complete their life cycle when soil is absent by pupating in plant root-supporting substrates commonly used in greenhouses. Wandering small hive beetle larvae were introduced into containers with coconut fiber, perlite, a mixture of both and stone wool substrates to investigate pupation success and development time. Sand was used as control substrate. In all but one substrate (perlite), small hive beetles developed into adults equally well as they did in the sand. Development time ranged between 23 and 37 d and was not different from that of the control. We showed that small hive beetles can pupate in greenhouse substrates. This could constitute a problem for greenhouse pollination as well as it could facilitate small hive beetle survival in areas which otherwise would be deemed unsuitable or marginal environments for small hive beetles to become established. Our study highlights the opportunistic nature of the small hive beetle as an invasive species.


Assuntos
Besouros , Animais , Abelhas , Espécies Introduzidas , Larva , Pólen , Solo
3.
Glob Chang Biol ; 25(11): 3642-3655, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31394018

RESUMO

Climate change and biological invasions are two major global environmental challenges. Both may interact, e.g. via altered impact and distribution of invasive alien species. Even though invasive species play a key role for compromising the health of honey bees, the impact of climate change on the severity of such species is still unknown. The small hive beetle (SHB, Aethina tumida, Murray) is a parasite of honey bee colonies. It is endemic to sub-Saharan Africa and has established populations on all continents except Antarctica. Since SHBs pupate in soil, pupation performance is governed foremost by two abiotic factors, soil temperature and moisture, which will be affected by climate change. Here, we investigated SHB invasion risk globally under current and future climate scenarios. We modelled survival and development time during pupation (=pupal performance) in response to soil temperature and soil moisture using published and novel experimental data. Presence data on SHB distribution were used for model validation. We then linked the model with global soil data in order to classify areas (resolution: 10 arcmin; i.e. 18.6 km at the equator) as unsuitable, marginal and suitable for SHB pupation performance. Under the current climate, the results show that many areas globally yet uninvaded are actually suitable, suggesting considerable SHB invasion risk. Future scenarios of global warming project a vehement increase in climatic suitability for SHB and corresponding potential for invasion, especially in the temperate regions of the Northern hemisphere, thereby creating demand for enhanced and adapted mitigation and management. Our analysis shows, for the first time, effects of global warming on a honey bee pest and will help areas at risk to prepare adequately. In conclusion, this is a clear case for global warming promoting biological invasion of a pest species with severe potential to harm important pollinator species globally.


Assuntos
Besouros , Aquecimento Global , Animais , Regiões Antárticas , Abelhas , Espécies Introduzidas , Solo
4.
PLoS One ; 7(4): e36285, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558421

RESUMO

BACKGROUND: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. METHODOLOGY/PRINCIPAL FINDINGS: Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. CONCLUSIONS/SIGNIFICANCE: This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter.


Assuntos
Abelhas/crescimento & desenvolvimento , Estações do Ano , Varroidae/fisiologia , Acaricidas , Animais , Abelhas/fisiologia , Longevidade , Análise de Sobrevida , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA