Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 432(18): 5023-5042, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32234309

RESUMO

While most of the articles in this issue review the workings of integral membrane enzymes, in this review, we describe the catalytic mechanism of an enzyme that contains a soluble catalytic domain but appears to catalyze its reaction on the membrane surface, anchored and assisted by a separate regulatory amphipathic helical domain and inter-domain linker. Membrane partitioning of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme of phosphatidylcholine metabolism, is regulated chiefly by changes in membrane phospholipid composition, and boosts the enzyme's catalytic efficiency >200-fold. Catalytic enhancement by membrane binding involves the displacement of an auto-inhibitory helix from the active site entrance-way and promotion of a new conformational ensemble for the inter-domain, allosteric linker that has an active role in the catalytic cycle. We describe the evidence for close contact between membrane lipid, a compact allosteric linker, and the CCT active site, and discuss potential ways that this interaction enhances catalysis.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Citidina Trifosfato/metabolismo , Lipídeos de Membrana/metabolismo , Catálise , Domínio Catalítico , Membrana Celular/enzimologia , Colina-Fosfato Citidililtransferase/química , Modelos Moleculares
2.
Mol Biol Cell ; 31(10): 1047-1059, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186954

RESUMO

CTP:phosphocholine cytidylyltransferase-alpha (CCTα) and CCTß catalyze the rate-limiting step in phosphatidylcholine (PC) biosynthesis. CCTα is activated by association of its α-helical M-domain with nuclear membranes, which is negatively regulated by phosphorylation of the adjacent P-domain. To understand how phosphorylation regulates CCT activity, we developed phosphosite-specific antibodies for pS319 and pY359+pS362 at the N- and C-termini of the P-domain, respectively. Oleate treatment of cultured cells triggered CCTα translocation to the nuclear envelope (NE) and nuclear lipid droplets (nLDs) and rapid dephosphorylation of pS319. Removal of oleate led to dissociation of CCTα from the NE and increased phosphorylation of S319. Choline depletion of cells also caused CCTα translocation to the NE and S319 dephosphorylation. In contrast, Y359 and S362 were constitutively phosphorylated during oleate addition and removal, and CCTα-pY359+pS362 translocated to the NE and nLDs of oleate-treated cells. Mutagenesis revealed that phosphorylation of S319 is regulated independently of Y359+S362, and that CCTα-S315D+S319D was defective in localization to the NE. We conclude that the P-domain undergoes negative charge polarization due to dephosphorylation of S319 and possibly other proline-directed sites and retention of Y359 and S362 phosphorylation, and that dephosphorylation of S319 and S315 is involved in CCTα recruitment to nuclear membranes.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Gotículas Lipídicas/metabolismo , Membrana Nuclear/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Colina/metabolismo , Colina-Fosfato Citidililtransferase/química , Células HeLa , Humanos , Modelos Biológicos , Ácido Oleico/metabolismo , Fosforilação , Transporte Proteico , Ratos
3.
J Biol Chem ; 294(42): 15517-15530, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31488547

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT), the rate-limiting enzyme in phosphatidylcholine (PC) synthesis, is an amphitropic enzyme that regulates PC homeostasis. Recent work has suggested that CCTα activation by binding to a PC-deficient membrane involves conformational transitions in a helix pair (αE) that, along with a short linker of unknown structure (J segment), bridges the catalytic domains of the CCTα dimer to the membrane-binding (M) domains. In the soluble, inactive form, the αE helices are constrained into unbroken helices by contacts with two auto-inhibitory (AI) helices from domain M. In the active, membrane-bound form, the AI helices are displaced and engage the membrane. Molecular dynamics simulations have suggested that AI displacement is associated with hinge-like bending in the middle of the αE, positioning its C terminus closer to the active site. Here, we show that CCTα activation by membrane binding is sensitive to mutations in the αE and J segments, especially within or proximal to the αE hinge. Substituting Tyr-213 within this hinge with smaller uncharged amino acids that could destabilize interactions between the αE helices increased both constitutive and lipid-dependent activities, supporting a link between αE helix bending and stimulation of CCT activity. The solvent accessibilities of Tyr-213 and Tyr-216 suggested that these tyrosines move to new partially buried environments upon membrane binding of CCT, consistent with a folded αE/J structure. These data suggest that signal transduction through the modular αE helix pair relies on shifts in its conformational ensemble that are controlled by the AI helices and their displacement upon membrane binding.


Assuntos
Colina-Fosfato Citidililtransferase/química , Colina-Fosfato Citidililtransferase/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Membrana Celular/química , Membrana Celular/enzimologia , Membrana Celular/genética , Colina-Fosfato Citidililtransferase/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Fosfatidilcolinas/metabolismo , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Alinhamento de Sequência
4.
J Biol Chem ; 294(42): 15531-15543, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31488548

RESUMO

The rate-limiting step in the biosynthesis of the major membrane phospholipid, phosphatidylcholine, is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT), which is regulated by reversible membrane binding of a long amphipathic helix (domain M). The M domain communicates with the catalytic domain via a conserved ∼20-residue linker, essential for lipid activation of CCT. Previous analysis of this region (denoted as the αEC/J) using MD simulations, cross-linking, mutagenesis, and solvent accessibility suggested that membrane binding of domain M promotes remodeling of the αEC/J into a more compact structure that is required for enzyme activation. Here, using tryptophan fluorescence quenching, we show that the allosteric linker lies superficially on the membrane surface. Analyses with truncated CCTs show that the αEC/J can interact with lipids independently of the M domain. We observed strong FRET between engineered tryptophans in the αEC/J and vesicles containing dansyl-phosphatidylethanolamine that depended on the native J sequence. These data are incompatible with the extended conformation of the αE helix observed in the previously determined crystal structure of inactive CCT but support a bent αE helix conformation stabilized by J segment interactions. Our results suggest that the membrane-adsorbed, folded allosteric linker may partially cover the active site cleft and pull it close to the membrane surface, where cytidyl transfer can occur efficiently in a relatively anhydrous environment.


Assuntos
Membrana Celular/enzimologia , Colina-Fosfato Citidililtransferase/química , Colina-Fosfato Citidililtransferase/metabolismo , Sítio Alostérico , Biocatálise , Domínio Catalítico , Membrana Celular/química , Membrana Celular/genética , Colina-Fosfato Citidililtransferase/genética , Ativação Enzimática , Humanos , Lipídeos/química , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos
5.
J Biol Chem ; 294(5): 1490-1501, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559292

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme's response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.


Assuntos
Colina-Fosfato Citidililtransferase/química , Colina-Fosfato Citidililtransferase/metabolismo , Lipodistrofia/genética , Mutação , Osteocondrodisplasias/genética , Dobramento de Proteína , Distrofias Retinianas/genética , Retinose Pigmentar/genética , Animais , Células COS , Catálise , Domínio Catalítico , Chlorocebus aethiops , Colina-Fosfato Citidililtransferase/genética , Cristalografia por Raios X , Humanos , Lipodistrofia/patologia , Osteocondrodisplasias/patologia , Fosfatidilcolinas/metabolismo , Ligação Proteica , Estabilidade Proteica , Distrofias Retinianas/patologia , Retinose Pigmentar/patologia
6.
J Biol Chem ; 293(18): 7070-7084, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29519816

RESUMO

The activity of CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme in phosphatidylcholine synthesis, is regulated by reversible interactions of a lipid-inducible amphipathic helix (domain M) with membrane phospholipids. When dissociated from membranes, a portion of the M domain functions as an auto-inhibitory (AI) element to suppress catalysis. The AI helix from each subunit binds to a pair of α helices (αE) that extend from the base of the catalytic dimer to create a four-helix bundle. The bound AI helices make intimate contact with loop L2, housing a key catalytic residue, Lys122 The impacts of the AI helix on active-site dynamics and positioning of Lys122 are unknown. Extensive MD simulations with and without the AI helix revealed that backbone carbonyl oxygens at the point of contact between the AI helix and loop L2 can entrap the Lys122 side chain, effectively competing with the substrate, CTP. In silico, removal of the AI helices dramatically increased αE dynamics at a predicted break in the middle of these helices, enabling them to splay apart and forge new contacts with loop L2. In vitro cross-linking confirmed the reorganization of the αE element upon membrane binding of the AI helix. Moreover, when αE bending was prevented by disulfide engineering, CCT activation by membrane binding was thwarted. These findings suggest a novel two-part auto-inhibitory mechanism for CCT involving capture of Lys122 and restraint of the pliable αE helices. We propose that membrane binding enables bending of the αE helices, bringing the active site closer to the membrane surface.


Assuntos
Colina-Fosfato Citidililtransferase/química , Animais , Sítios de Ligação , Ligação Competitiva , Catálise , Domínio Catalítico , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Glicina/química , Ligação de Hidrogênio , Lisina/química , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Ratos
7.
Biochim Biophys Acta ; 1861(8 Pt B): 847-861, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26747646

RESUMO

The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.


Assuntos
Colina-Fosfato Citidililtransferase/química , Colina-Fosfato Citidililtransferase/fisiologia , Mecanotransdução Celular/fisiologia , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína
8.
Prog Lipid Res ; 59: 147-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26165797

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.


Assuntos
Colina-Fosfato Citidililtransferase/fisiologia , Fosfatidilcolinas/biossíntese , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Sequência Conservada , Humanos , Gotículas Lipídicas/metabolismo , Lipoproteínas/fisiologia , Dados de Sequência Molecular , Neurogênese , Processamento de Proteína Pós-Traducional , Transporte Proteico
9.
J Biol Chem ; 289(13): 9053-64, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24519946

RESUMO

CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) is the main regulatory enzyme for de novo biosynthesis of phosphatidylethanolamine by the CDP-ethanolamine pathway. There are two isoforms of Pcyt2, -α and -ß; however, very little is known about their specific roles in this important metabolic pathway. We previously demonstrated increased phosphatidylethanolamine biosynthesis subsequent to elevated activity and phosphorylation of Pcyt2α and -ß in MCF-7 breast cancer cells grown under conditions of serum deficiency. Mass spectroscopy analyses of Pcyt2 provided evidence for isoform-specific as well as shared phosphorylations. Pcyt2ß was specifically phosphorylated at the end of the first cytidylyltransferase domain. Pcyt2α was phosphorylated within the α-specific motif that is spliced out in Pcyt2ß and on two PKC consensus serine residues, Ser-215 and Ser-223. Single and double mutations of PKC consensus sites reduced Pcyt2α phosphorylation, activity, and phosphatidylethanolamine synthesis by 50-90%. The phosphorylation and activity of endogenous Pcyt2 were dramatically increased with phorbol esters and reduced by specific PKC inhibitors. In vitro translated Pcyt2α was phosphorylated by PKCα, PKCßI, and PKCßII. Pcyt2α Ser-215 was also directly phosphorylated with PKCα. Mapping of the Pcyt2α- and -ß-phosphorylated sites to the solved structure of a human Pcyt2ß showed that they clustered within and flanking the central linker region that connects the two catalytic domains and is a novel regulatory segment not present in other cytidylyltransferases. This study is the first to demonstrate differences in phosphorylation between Pcyt2 isoforms and to uncover the role of the PKC-regulated phosphorylation.


Assuntos
Proteína Quinase C/metabolismo , RNA Nucleotidiltransferases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Domínio Catalítico , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Células MCF-7 , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ésteres de Forbol/farmacologia , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Nucleotidiltransferases/química , Soro/metabolismo
10.
Biochemistry ; 53(3): 450-61, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24397368

RESUMO

Membrane-induced amphipathic helices (m-AH) can act as membrane curvature sensors by binding preferentially to hydrophobic lipid packing defects enriched in curved surfaces. Reliance on hydrophobicity and membrane curvature for binding is enhanced when electrostatic interactions are weak. We probed the role of modifying membrane and protein charge on the curvature sensing of two m-AH-containing proteins, CTP:phosphocholine cytidylyltransferase (CCT) and α-synuclein (α-syn). The m-AH domains in both proteins are flanked by disordered tails with multiple phosphoserines (CCT) or acidic residues (α-syn), which we mutated to glutamate or serine to modify protein charge. Analysis of binding to vesicles of varying curvature showed that increasing the negative charge of the tail region decreased the binding strength and augmented the curvature dependence, especially for CCT. We attribute this to charge repulsion. Conversely, increasing the membrane negative charge dampened the curvature dependence. Our data suggest that discrimination of curved versus flat membranes with high negative charge could be modulated by phosphorylation.


Assuntos
Colina-Fosfato Citidililtransferase/química , Proteínas de Membrana/química , alfa-Sinucleína/química , Sequência de Aminoácidos , Animais , Colina-Fosfato Citidililtransferase/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Ratos , Eletricidade Estática , alfa-Sinucleína/genética
11.
J Biol Chem ; 289(3): 1742-55, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24275660

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT) interconverts between an inactive soluble and active membrane-bound form in response to changes in membrane lipid composition. Activation involves disruption of an inhibitory interaction between the αE helices at the base of the active site and an autoinhibitory (AI) segment in the regulatory M domain and membrane insertion of the M domain as an amphipathic helix. We show that in the CCT soluble form the AI segment functions to suppress kcat and elevate the Km for CTP. The crystal structure of a CCT dimer composed of the catalytic and AI segments reveals an AI-αE interaction as a cluster of four amphipathic helices (two αE and two AI helices) at the base of the active sites. This interaction corroborates mutagenesis implicating multiple hydrophobic residues within the AI segment that contribute to its silencing function. The AI-αE interaction directs the turn at the C-terminal end of the AI helix into backbone-to-backbone contact with a loop (L2) at the opening to the active site, which houses the key catalytic residue, lysine 122. Molecular dynamics simulations suggest that lysine 122 side-chain orientations are constrained by contacts with the AI helix-turn, which could obstruct its engagement with substrates. This work deciphers how the CCT regulatory amphipathic helix functions as a silencing device.


Assuntos
Membrana Celular/enzimologia , Colina-Fosfato Citidililtransferase/química , Simulação de Dinâmica Molecular , Animais , Domínio Catalítico , Membrana Celular/química , Membrana Celular/genética , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Cristalografia por Raios X , Mutagênese , Estrutura Secundária de Proteína , Ratos
12.
J Mol Biol ; 425(9): 1546-64, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23238251

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in the synthesis of phosphatidylcholine, is activated by binding membranes using a lipid-induced amphipathic helix (domain M). Domain M functions to silence catalysis when CCT is not membrane engaged. The silencing mechanism is unknown. We used photo-cross-linking and mass spectrometry to identify contacts between domain M and other CCT domains in its soluble form. Each of four sites in domain M forged cross-links to the same set of peptides that flank the active site and overlap at helix αE at the base of the active site. These cross-links were broken in the presence of activating lipid vesicles. Mutagenesis of domain M revealed that multiple hydrophobic residues within a putative auto-inhibitory (AI) motif contribute to the contact with helix αE and silencing. Helix αE was confirmed as the docking site for domain M by deuterium exchange analysis. We compared the dynamics and fold stability of CCT domains by site-directed fluorescence anisotropy and urea denaturation. The results suggest a bipartite structure for domain M: a disordered N-terminal portion and an ordered C-terminal AI motif with an unfolding transition identical with that of helix αE. Reduction in hydrophobicity of the AI motif decreased its order and fold stability, as did deletion of the catalytic domain. These results support a model in which catalytic silencing is mediated by the docking of an amphipathic AI motif onto the amphipathic helices αE. An unstructured leash linking αE with the AI motif may facilitate both the silencing contact and its membrane-triggered disruption.


Assuntos
Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/química , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Regulação Alostérica/genética , Sítio Alostérico/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Colina-Fosfato Citidililtransferase/genética , Proteínas de Membrana/antagonistas & inibidores , Modelos Moleculares , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Secundária de Proteína/genética , Ratos
13.
J Biol Chem ; 287(46): 38980-91, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22988242

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT), an amphitropic enzyme that regulates phosphatidylcholine synthesis, is composed of a catalytic head domain and a regulatory tail. The tail region has dual functions as a regulator of membrane binding/enzyme activation and as an inhibitor of catalysis in the unbound form of the enzyme, suggesting conformational plasticity. These functions are well conserved in CCTs across diverse phyla, although the sequences of the tail regions are not. CCT regulatory tails of diverse origins are composed of a long membrane lipid-inducible amphipathic helix (m-AH) followed by a highly disordered segment, reminiscent of the Parkinson disease-linked protein, α-synuclein, which we show shares a novel sequence motif with vertebrate CCTs. To unravel features required for silencing, we created chimeric enzymes by fusing the catalytic domain of rat CCTα to the regulatory tail of CCTs from Drosophila, Caenorhabditis elegans, or Saccharomyces cerevisiae or to α-synuclein. Only the tail domains of the two invertebrate CCTs were competent for both suppression of catalytic activity and for activation by lipid vesicles. Thus, both silencing and activating functions of the m-AH can tolerate significant changes in length and sequence. We identified a highly amphipathic 22-residue segment in the m-AH with features conserved among animal CCTs but not yeast CCT or α-synuclein. Deletion of this segment from rat CCT increased the lipid-independent V(max) by 10-fold, equivalent to the effect of deleting the entire tail, and severely weakened membrane binding affinity. However, membrane binding was required for additional increases in catalytic efficiency. Thus, full activation of CCT may require not only loss of a silencing conformation in the m-AH but a gain of an activating conformation, promoted by membrane binding.


Assuntos
Colina-Fosfato Citidililtransferase/fisiologia , Citidina Trifosfato/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Catálise , Domínio Catalítico , Colina-Fosfato Citidililtransferase/química , Biologia Computacional/métodos , Ativação Enzimática , Inativação Gênica , Cinética , Lipídeos/química , Dados de Sequência Molecular , Fosfatidilcolinas/química , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , alfa-Sinucleína/química
14.
Biochim Biophys Acta ; 1818(5): 1173-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22285779

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT) is an amphitropic protein regulating phosphatidylcholine synthesis. Lipid-induced folding of its amphipathic helical (AH) membrane-binding domain activates the enzyme. In this study we examined the membrane deforming property of CCT in vitro by monitoring conversion of vesicles to tubules, using transmission electron microscopy. Vesicle tubulation was proportional to the membrane density of CCT and proceeded either as growth from a pre-formed surface bud, or as a global transformation of roughly spherical vesicles into progressively thinner tubules. The tubulation pathway depended on the lipid compositional heterogeneity of the vesicles, with heterogeneous mixtures supporting the bud-extension pathway. Co-existence of vesicles alongside thick and thin tubules suggested that CCT can discriminate between flat membrane surfaces and those with emerging curvature, binding preferentially to the latter. Thin tubules had a limiting diameter of ~12nm, likely representing bilayer cylinders with a very high density of 1 CCT/50 lipids. The AH segment was necessary and sufficient for tubulation. AH regions from diverse CCT sources, including C. elegans, had tubulation activity that correlated with α-helical length. The AH motifs in CCT and the Parkinson's-related protein, α-synuclein, have similar features, however the CCT AH was more effective in its membrane remodeling function. That CCT can deform vesicles of physiologically relevant composition suggests that CCT binding to membranes may initiate deformations required for organelle morphogenesis and at the same time stimulate synthesis of the PC required for the development of these regions.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/enzimologia , Colina-Fosfato Citidililtransferase/química , Membranas Artificiais , Nanotubos/química , Motivos de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/química , Ratos , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
15.
J Biol Chem ; 286(14): 12349-60, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21303909

RESUMO

Membrane phosphatidylcholine homeostasis is maintained in part by a sensing device in the key regulatory enzyme, CTP:phosphocholine cytidylyltransferase (CCT). CCT responds to decreases in membrane phosphatidylcholine content by reversible membrane binding and activation. Two prominent isoforms, CCTα and -ß2, have nearly identical catalytic domains and very similar membrane binding amphipathic helical (M) domains but have divergent and structurally disordered N-terminal (N) and C-terminal phosphorylation (P) regions. We found that the binding affinity of purified CCTß2 for anionic membranes was weaker than CCTα by more than an order of magnitude. Using chimeric CCTs, insertion/deletion mutants, and truncated CCTs, we show that the stronger affinity of CCTα can be attributed in large part to the electrostatic membrane binding function of the polybasic nuclear localization signal (NLS) motif, present in the unstructured N-terminal segment of CCTα but lacking in CCTß2. The membrane partitioning of CCTß2 in cells enriched with the lipid activator, oleic acid, was also weaker than that of CCTα and was elevated by incorporation of the NLS motif. Thus, the polybasic NLS can function as a secondary membrane binding motif not only in vitro but in the context of cell membranes. A comparison of phosphorylated, dephosphorylated, and region P-truncated forms showed that the in vitro membrane affinity of CCTß2 is more sensitive than CCTα to phosphorylation status, which antagonizes membrane binding of both isoforms. These data provide a model wherein the primary membrane binding motif, an amphipathic helical domain, works in collaboration with other intrinsically disordered segments that modulate membrane binding strength. The NLS reinforces, whereas the phosphorylated tail antagonizes the attraction of domain M for anionic membranes.


Assuntos
Membrana Celular/metabolismo , Colina-Fosfato Citidililtransferase/metabolismo , Sinais de Localização Nuclear/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Colina-Fosfato Citidililtransferase/genética , Immunoblotting , Mutagênese Sítio-Dirigida , Sinais de Localização Nuclear/genética , Fosforilação , Ligação Proteica , Isoformas de Proteínas/genética
16.
J Biol Chem ; 286(14): 12712-23, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21285350

RESUMO

Receptor-induced targeting of exchange factors to specific cellular membranes is the predominant mechanism for initiating and compartmentalizing signal transduction by Ras GTPases. The exchange factor RasGRP1 has a C1 domain that binds the lipid diacylglycerol and thus can potentially mediate membrane localization in response to receptors that are coupled to diacylglycerol-generating phospholipase Cs. However, the C1 domain is insufficient for targeting RasGRP1 to the plasma membrane. We found that a basic/hydrophobic cluster of amino acids within the plasma membrane-targeting domain of RasGRP1 is instead responsible for plasma membrane targeting. This basic/hydrophobic cluster binds directly to phospholipid vesicles containing phosphoinositides via electrostatic interactions with polyanionic phosphoinositide headgroups and insertion of a tryptophan into the lipid bilayer. B cell antigen receptor ligation and other stimuli induce plasma membrane targeting of RasGRP1 by activating the phosphoinositide 3-kinase signaling pathway, which generates phosphoinositides within the plasma membrane. Direct detection of phosphoinositides by the basic/hydrophobic cluster of RasGRP1 provides a novel mechanism for coupling and co-compartmentalizing phosphoinositide 3-kinase and Ras signaling and, in coordination with diacylglycerol detection by the C1 domain, gives RasGRP1 the potential to serve as an integrator of converging signals from the phosphoinositide 3-kinase and phospholipase C pathways.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Estrutura Terciária de Proteína
17.
J Biol Chem ; 284(48): 33535-48, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19783652

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in the synthesis of phosphatidylcholine, the most abundant phospholipid in eukaryotic cell membranes. The CCT-catalyzed transfer of a cytidylyl group from CTP to phosphocholine to form CDP-choline is regulated by a membrane lipid-dependent mechanism imparted by its C-terminal membrane binding domain. We present the first analysis of a crystal structure of a eukaryotic CCT. A deletion construct of rat CCTalpha spanning residues 1-236 (CCT236) lacks the regulatory domain and as a result displays constitutive activity. The 2.2-A structure reveals a CCT236 homodimer in complex with the reaction product, CDP-choline. Each chain is composed of a complete catalytic domain with an intimately associated N-terminal extension, which together with the catalytic domain contributes to the dimer interface. Although the CCT236 structure reveals elements involved in binding cytidine that are conserved with other members of the cytidylyltransferase superfamily, it also features nonconserved active site residues, His-168 and Tyr-173, that make key interactions with the beta-phosphate of CDP-choline. Mutagenesis and kinetic analyses confirmed their role in phosphocholine binding and catalysis. These results demonstrate structural and mechanistic differences in a broadly conserved protein fold across the cytidylyltransferase family. Comparison of the CCT236 structure with those of other nucleotidyltransferases provides evidence for substrate-induced active site loop movements and a disorder-to-order transition of a loop element in the catalytic mechanism.


Assuntos
Domínio Catalítico , Colina-Fosfato Citidililtransferase/química , Nucleotidiltransferases/química , Estrutura Terciária de Proteína , Animais , Catálise , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Cristalização , Cristalografia por Raios X , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Cinética , Modelos Moleculares , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilcolina/química , Fosforilcolina/metabolismo , Ligação Proteica , Multimerização Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
18.
J Biol Chem ; 283(42): 28137-48, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18694933

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT), a rate-limiting enzyme in phosphatidylcholine synthesis, is regulated by reversible membrane interactions mediated by an amphipathic helical domain (M) that binds selectively to anionic lipids. CCT is a dimer; thus the functional unit has two M domains. To probe the functional contribution of each domain M we prepared a CCT heterodimer composed of one full-length subunit paired with a CCT subunit truncated before domain M that was also catalytically dead. We compared this heterodimer to the full-length homodimer with respect to activation by anionic vesicles, vesicle binding affinities, and promotion of vesicle aggregation. Surprisingly for all three functions the dimer with just one domain M behaved similarly to the dimer with two M domains. Full activation of the wild-type subunit was not impaired by loss of one domain M in its partner. Membrane binding affinities were the same for dimers with one versus two M domains, suggesting that the two M domains of the dimer do not engage a single bilayer simultaneously. Vesicle cross-bridging was also unhindered by loss of one domain M, suggesting that another motif couples with domain M for cross-bridging anionic membranes. Mutagenesis revealed that the positively charged nuclear localization signal sequence constitutes that second motif for membrane cross-bridging. We propose that the two M domains of the CCT dimer engage a single bilayer via an alternating binding mechanism. The tethering function involves the cooperation of domain M and the nuclear localization signal sequence, each engaging separate membranes. Membrane binding of a single M domain is sufficient to fully activate the enzymatic activity of the CCT dimer while sustaining the low affinity, reversible membrane interaction required for regulation of CCT activity.


Assuntos
Membrana Celular/metabolismo , Colina-Fosfato Citidililtransferase/química , Citidina Trifosfato/química , Motivos de Aminoácidos , Animais , Colina-Fosfato Citidililtransferase/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Glutaral/química , Histidina/química , Cinética , Modelos Biológicos , Mutagênese , Ligação Proteica , Estrutura Terciária de Proteína , Ratos
19.
Mol Biol Cell ; 19(1): 237-47, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17959832

RESUMO

The nucleoplasmic reticulum (NR), a nuclear membrane network implicated in signaling and transport, is formed by the biosynthetic and membrane curvature-inducing properties of the rate-limiting enzyme in phosphatidylcholine synthesis, CTP:phosphocholine cytidylyltransferase (CCT) alpha. The NR is formed by invagination of the nuclear envelope and has an underlying lamina that may contribute to membrane tubule formation or stability. In this study we investigated the role of lamins A and B in NR formation in response to expression and activation of endogenous and fluorescent protein-tagged CCTalpha. Similarly to endogenous CCTalpha, CCT-green fluorescent protein (GFP) reversibly translocated to nuclear tubules projecting from the NE in response to oleate, a lipid promoter of CCT membrane binding. Coexpression and RNA interference experiments revealed that both CCTalpha and lamin A and B were necessary for NR proliferation. Expression of CCT-GFP mutants with compromised membrane-binding affinity produced fewer nuclear tubules, indicating that the membrane-binding function of CCTalpha promotes the expansion of the NR. Proliferation of atypical bundles of nuclear membrane tubules by a CCTalpha mutant that constitutively associated with membranes revealed that expansion of the double-bilayer NR requires the coordinated assembly of an underlying lamin scaffold and induction of membrane curvature by CCTalpha.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Laminas/metabolismo , Membrana Nuclear/enzimologia , Animais , Células CHO , Colina-Fosfato Citidililtransferase/química , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Membrana Nuclear/ultraestrutura , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo
20.
Biochem J ; 406(2): 223-36, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17523924

RESUMO

RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding.


Assuntos
Membrana Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Diglicerídeos/química , Diglicerídeos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sequência de Aminoácidos , Animais , Ânions/química , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ésteres de Forbol , Fosfolipídeos/química , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA